AFIT/GSO/ENS/93D-16 AD-A273 g5
LT ’

THE APPLICATION OF SIMULATED ANNEALING
TO STOCHASTIC SYSTEMS

THESIS

Presented to the Faculty of the Graduate School of Engineering
of the Air Force Institute of Technology

Air University Y

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Space Operations

Charles B. Warrender
Captain, USAF

3-30511
N\“\\\\\H\\l\\\\\\Il\\\l\\l\\\\l\\\\\\ll\

Approved for public release; distribution unlimited

NS 16 919




STUDENT: Captain Charles Bret Warrender CLASS: GSO-93D

THESIS TITLE: The Application of Simulated Annealing to Stochastic Systems

DEFENSE DATE: 18 November 1993

COMMITTEE:

S Sttt

Advisor:

Accesion For

S S. SHEDDEN, Lt Col, USAF
Assistant Professor of Operation Research,
Department of Operational Sciences, AFIT/ENS

e 0 D

NTIS CRAS g

DTiC TAB

Unai~ounced ]
J"_..;(n’ﬁf,.uti'\")n ______________________________
R .
IDIERIT Y [

o -V HE
-, o

0t

DENNIS C. DIETZ, Lt Col, USAF
Assistant Professor of Operation Research,
Department of Operational Sciences, AFTT/ENS

DTIC QUALITY INSPRECTED )




Acknowledaments

Lt Col James Shedden proposed this project. I am indebted to him not only for
suggesting the topic, but also for giving me his time and patience as an advisor. I know
that I have gained more objectivity towards my writing and a clearer understanding of the
scientific process as a result of his interest. I hope that my effort in conducting this
research reflects well on him.

I must thank my mother- and father-in-law for helping with the purchase of a
computer used in doing the research. I would not have been able to conduct so many
experiments with such ease without sole access to this computer.

Conducting some research and writing a report has very little meaning if some
objective reader cannot understand the results. I thank Lt Col Dietz for making sure that
the results do make some sense. I must extend to him additional thanks for the use of his
computer code; code that eased the evaluation of some of the results.

I must apologize to those closest to me whom I may have offended or ignored while
I pursued this research. Knowing that a thesis effort demands an extrzordinary amount of
time and concentration gives little comfort to those for whom the research is meaningless,
but for whom my affection is not. I hope that my son, Scott, and my daughter, Diane, will
forgive me the time I took away from them. Most of all, I thank my wife, Christy, for
making it easier on everyone, for being there when I was not, and for being there when I

was, t00.

Charles B. Warrender




Iable of Contents
Page
ACKNOWIBAGMENLES..........reiiieieciecteecere e ree s ser e s e rnare e e reeeaeas ii
Table 0f CONENLS ........oooreriietec e ra e e iii
LiSt Of FIQUIES ....ceeee ittt et e et s e ee s e s e e s e nan s vii
LiSt Of TADIES .....eveieiicceeererer et rtre et e e rer e ss s anee e e ane viii
Abstract....... eteeeeeeerretteieeerataaaee st aar e et ee sttt e nn e s et ettt e annee s e e na e s sanaeantenans ix
The Application of Simulated Annealing to Stochastic Systems................ 1
L INtrodUCHON. ..ottt 1
1.1, BaCKGrOUNG .........oiiiiieecceee ettt ereeerr et es e stre e s s san e e eesssaeseennns 1
1.2, Problem........ccoiiiieeeeectrecereccreeescneecens e s see e saeeserte e s e ssee e saaasennnes 3
1.3, SCOPB ..ottt s s sae e et e e e essreiae s aeesane s ar s s ssesnnesnnnenses 4
1.4. General APProach .........ccceevierrcerrienineceerceereeessesnessessesssssssanas 4
1.5. Sequence of Presentation............ccccceveeeeerceeircerrseencreeeessee e 5
Il. Literature ROVIEW........c..coivveeiiierieeereee et csneaeseeeesaesessaasssesassenseenens 6
2.1. Heuristic AIGOTthMS ..........cccciniriiiieieercee et ree e eae e 6
2.1.1. Local SearCh ........ccccoiiiceiieititreeeeesrt e essree s rer e e 8
2.1.2. Simulated ANNealing ..........ccccceveeirrecireeieeienreeereeeseeeeeereeans 10
2.1.2.1. Physical Annealing. ........cccoevcerireeiiiicnrecenrencsenessnenns 10
2.1.2.2. Thermal EQuUIlibrium. ......c.coummeeririiieeeiecccrreeceeeeeee 11
2.1.2.3. ANAlOgy. ...coocoiiiieeiiitttcte et 12
2.2. Theoretical ReSUIS..........cc.cceereieeiieeniencticter e erane e eereans 13
2.2.1. HomOgenous TheOrY.........cccccieiiviineinitiireinsreresreeeeeneeeane 14




2.2.2. Nonhomogeneaous Theory...........c.ccereeererceneeerereseseneenenes 16
2.3. Empirical ReSUNS............ccccevuirieecrniceeeec s v e 17
2.3.1. Problem FOrmulation...........c.cceecevveevierrinensiensecnnenennnssaenes 17
2.3.2. ANGIYSES.......conuerieiriiireeee st ae et ee e e reenns 22
2.4. Modeling a Random Process .........cccceeveervrrecerecrceeecnneeennneeenanes 26
2.5. SUMMAY. ....ooiiiiiiciecieeee e e seesereeeaeesas e s e rsessaaserasensseseesennas 28
L. Methodology .......cooovceiiieeieieeniirer ettt seve e stne s et e e snae e saeees 30
3.1. The Simulation model........c....cocoeeerieiiieiiniiieeeee e 30
3.1.1. The Timing of Traffic Lights. ......c..cccceecereiiinvenienrer e, 31
3.1.2. The Allocation of Machines in a Job-Shop -- Open
QuEUING NBIWOTK. .......coceieiiiiirrreirrere e ctreseec et n e saeeneas 32
3.1.3. The Allocation of Machines in a Job-Shop -- Closed
QUBUING NBIWOTK. .....cceeiienirieiectectertee et n et e sanennens 33
3.2. The Simulated Annealing Algorithm .............cccocvveeceecvvenrevnnnrenne. 34
3.3. The ACCEptanCe TeStS..........ccceeeriecrercruenruecieeerrenireeeeeeseeeaesesneas 38
3.3.1. Annealing Behavior Observed. ............ccccovvuiecnunnnnensencnnns 39
3.3.2. Annealing Behavior Desired. ............cccceeevmrvieecreceeceneennnen. 41
3.3.2.1. TUNING. .ottt es e sas e s e et eeaeesaaseseas 43
3.3.2.2. Forced CONVErgence. ......ccccuueeueeeeueeeecneeeenereeseeessnseenns 44
3.3.3. Aiternative Acceptance Tests Devised...........ccccceeverernennnn. 45
3.3.3.1. Geometric Temperature. .........c.ccceeevveereeiieereernereesennen 46
3.3.3.2. Linear Temperature. ........c..cccceccvvreierenrereercreeenneeessseeenns 48
3.3.3.3. Adaptive Temperature. ........cccccceeverrereriieercoreineeereeeennns 49
3.3.3.4. Elliptic Temperature.........ccccceeeecmeieeeeeiiieereeeeeeeeeeen, 51
3.3.3.5. Logarithmic Temperature..........ccccceveveerecccmerreineererennnen. 52

v




3.3.3.6. Linear Coefficiant...........c..cooveeuriirieireciimrnreeeerereereceeeens 54

3.3.3.7. Elliptic Coefficiant. ..........ccccecoieieiveerneereiireeec e 56
3.4. The COMPANISONS. .....cccccveeriiiirreerertreereciaeesscreeeseeensessasesanesssses 58
3.4.1. The Simulated Annealing Alternatives Compared. .............. 58
3.4.2. The Best Alternatives Chosen............cccceeviecnieniinnecinnnenne 59
3.4.3. Local Search Compared...........cccccccruiiniinininiernnnnceiinnnncnanes 59
IV. RESURS ..cooenririetreeccrrteeeet ettt aan e s 61
4.1. The Timing of Traffic Lights Model.............cccooevriiiiininiinnnne 62
4.1.1. Establishing the Base Response Value. ...................ccueeenee. 62
4.1.2. Comparing the Alternatives.................ccoccervieceivninneeninnnnne. 63
4.1.3. Choosing the Best Alternatives. ..........ccccocvinrivnnniennnne 64
4.1.4. Comparing with Local Search. ...........cccccvvevccencinncnnnnnnnne 64
4.2. The Configuration of Machines Model -- Open Queuing

L4 L= e T SO 65
4.2.1. Establishing the Base Response Value. .............ccceeeueneen. 65
4.2.2 Comparing the Alternatives.............c.cccoeivvcirinvcnvvrccevcnennane. 66
4.2 3. Choosing the Best Alternatives.............ccoccceevverccnerccnicriinnen. 66
4.2.4. Comparing with Local Search. ........cccccceremrorercrcrcreenneeee 67

4.3. The Configuration of Machines Model -- Closed Queuing
NEIWOIK ...ttt iceee e sres e 68
4.3.1. Establishing the Base Response Value. ............c.cceceevennn. 68
4.3.2. Comparing the Altermnatives. ..........ccccceveierrceerencerinenecneeens 68
4.3.3. Choosing the Best Alternatives...........cccccooveiiiniiiiniinnnnnnns 69
4.3.4. Comparing with Local Search. ...........cccovverecinnecricninennnn. 70
4.3.5. Additional Alternatives. ...........cccccoeiviniiinininniicne 70

v




4.4, SUMMANY .....cociiieiiiieeieenitecaeeieesseesstessseessssseseesssesssosassssesasnssnns 71

V. Conclusions and Recommendations..............ccccceerrrienirveeinenserennne 73
5.1 CONCIUSIONS........coteeriiieieiinie e e ceteeste st e eeae s ereeseae st e ae s 73
5.2 Recommendations.............ccceiiirieenrenneeniieeenesee s sene s e senennns 77

Appendix A: The Timing of Traffic Lights..........ccccvveevriiiieeiceeciecieenn, 79

Appendix B: The Configuration of Machines -- Open Queuing

NBIWOTK. ..ottt rccritee ceeatveeteecaseeteeessseseeeseasaesesasesnnnsnsserernaes 158
BiDHOGraphy ....cccciiriecereeccre st 206
AV - T TP 209




List of Figures

Page
FIGURE 2.1: Problem Formulation Relationships........c..ccccceceeverrunnnnnns 22
FIGURE 2.2: AGraph.......oocconeiiiiiertenteeccss et snnesee e nsae v 23
FIGURE 2.3: Graph Partitioning..........cccccoceeviriinireccenianeeneeseneeneesnne 23
FIGURE 3.1: Regulating TraffiC..........cccceeveeverrnirereniincenceneeneeneneene 31
FIGURE 3.2: Open Queuing Network..........ccccceouerveirierneniceecniessnnsnecnne 32
FIGURE 3.3: Closed Queuing Network .........c.ccccceveeevernrnircnerinsnnncnnens 33
FIGURE 3.4: Simulated Annealing Program FIOW...........ccccccevrvicnnnnne 35
FIGURE 3.5: Annealing Behavior............ccccceoeccvvervreeecseeriresseneeessneenenns 40
FIGURE 3.6: Johnson's AIgOrithm ...........ccccceeeeierreeniieinieencreeresnnnecsvnens 40
FIGURE 3.7: Deterministic Algorithm ..........c.ccccvnivceeiinenieninieeeeecene. 41
FIGURE 3.8: Geometric Temperature Convergence and Tuning
g o (- OO T RSP SRR 47
FIGURE 3.9: Linear Temperature Convergence Plot...............cccueuen.e. 48
FIGURE 3.10: Linear Temperature Tuning Plot ........cccccoeereecrenvernnnnne. 49
FIGURE 3.11: Adaptive Temperature Convergence Plot........................ 50
FIGURE 3.12: Elliptic Temperature Convergence Plot........................... 51
FIGURE 3.13: Elliptic Temperature Tuning Plot........cccccccermrcreevecnnnne. 52
FIGURE 3.14: Logarithmic Temperature Convergence and Tuning
PlIOtS .. sne s 53
FIGURE 3.15: Linear Coefficient Convergence and Tuning Plots.......... 55
FIGURE 3.16: Elliptic Coefficient Convergence Plot................ccunu....... 56
FIGURE 3.17: Eliiptic Coefficient Tuning Plot ..........ccccormrinrieriererneenne 57




List of Tables

Page
TABLE 2.1: Rate of Convergence using a Logarithmic
Temperature FUNCHON ..........ccccvevcrnciiiiiinecercree e eee e esae e 17
TABLE 2.2: A Comparison of Algorithms on Graph Partitioning............. 25
TABLE 4.1: Mode! 1 Solution Quality ............ccoeevvevriiinreeeceeeieeeereeeeens 63
TABLE 4.2: Model 1 Comparison with Local Search.............cccceuveennnen. 65
TABLE 4.3: Mode! 2 Solution Quality ............ccccoeveeueiieiiiieereceeeeeeeeens 66
TABLE 4.4: Model 2 Comparison with Local Search..............cccecuuee... 67
TABLE 4.5: Model 3 Solution Quality ..............cccovvveevreereeeeeriececreeraee. 69
TABLE 4.6: Model 3 Comparison with Local Search..............c..cocouueu..n.. 70
TABLE 4.7: Modei 3 Additional Atternatives.............ccccecceveveeueererenerennee. 71




Abstract

Simulated Annealing was used to optimize three constrained simulation models.

For each of these models, seven different acceptance functions were evaluated and
compared against the performance of Local Search. These comparisons demonstrated the
affect that different acceptance functions have on the performance of the algorithm. The
performance was measured by the average solution quality and average efficiency obtained
from several runs.

The first model facilitated the implementation of Simulated Annealing using the
SLAM simulation language. The configuration space was small, described by only two
decision variables. It demonstrated the viability of using Simulated Annealing to optimize
the variable settings in a simulation model. The second model, with six decision variables,
provided greater insight to the advantages and limitations of Simulated Annealing. This
model was implemented as an open queuing network. The third model, similar to the
second, was implemented as a closed queuing network. The results from this variation
were completely unexpected. They showed a wide performance separation among the
different acceptance functions that was not present in the first two models.

No attempt was made to justify the use of Simulated Annealing from a theoretical
perspective. Rather, empirical results from the three models were used to infer the

practical utility of the algorithm.




THE APPLICATION OF SIMULATED ANNEALING TO STOCHASTIC
SYSTEMS

L Intreduction

Simulated Annealing provides a means for optimizing the inputs to a simulation
model. Simulated Annealing optimizes an unknown function by mimicking the physical
process of annealing. The function being modeled typically represents a system. In this
research, Simulated Annealing is applied to stochastic models.

A simulation model can capture much of the randomness found in a system that a
functional model cannot. Most systems yield variable outcomes under the same conditions
due to some element of uncertainty. The response describes not a single outcome, but a
sample from a population of outcomes. The following research examines Simulated

Annealing as a way to find a desired, near-optimal configuration of a stochastic system.

1.1. Background

Traditionally, a problem is modeled as a "black box" requiring a variety of inputs
and generating some output. The problem solver must model the "black box" process,
decide which inputs to include, and determine an appropriate range of values for each

input. Each problem instance forms relationships among the inputs, or decision variables,




and the output, or response variable. For example, assume that you want to design a
satellite for space exploration: the decision variables are the spacecraft bus and the
sensors placed on the satellite; the response variable is the mission value of the satellite.
The spacecraft bus inherently constrains the total power, volume and mass available. Each
sensor uniquely determines a power requirement, unit volume, mass, and mission-value. A
"black box" formulation would use these relationships to determine the overall mission-
value of a given satellite design, or configuration of decision variables. Each combination
of decision variables describes an alrernative satellite design.

Optimization of a problem tries to find a configuration of decision variables that
results in the "best" response. Typically, a response variable can be given a numerical
value either as the result of a direct numerical measurement, like the mission-value of a
satellite design, or as the result of a transformation from a qualitative measurement to a
numerical scale. In either case, the possible responses can be ordered in some way from
smallest, or minimum valued response, to the largest, or maximum valued response. In
most problems, the "best" response corresponds to either the minimum or maximum
depending on the problem formulation and the goal, or objective, of the problem solver.

There are many different ways to find an optimum configuration. The preferred
model depends on the nature of the "black box" process. If a set of analytic expressions
adequately represents the process, then an analytic technique can often be used to find an
optimum. Computer algorithms based un analytic techniques solve large problems in
reasonable amounts of computing time (CPU time).

In many cases however, the number of possible configurations, the nature of the
objective, or the complex nature of the process prohibits the use of analytic algorithms to
f: d an optimum (20:33-4). In these cases, the configurations can be searched empirically,

using a heuristic technique to guide the search to an approximate optimum. A heuristic
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algorithm is considered valid if it can produce an acceptable configuration within the limits
of computing time (20:36). Local Search and a variant, Simulated Annealing, are heuristic
algorithms that have been used to find near-optimal configurations to combinatorial

problems.

1.2. Problem

Local Search and Simulated Annealing have been applied to deterministic problems,
where the responses are modeled by analytic functions. This research addresses the
adaptation of Simulated Annealing to stochastic problems, where the responses are
modeled more appropriately by simulations. Although Local Search and Simulated
Annealing will be discussed at length in Chapter 2, some brief remarks are needed to put
the problem in context.

Loca’ s5...ch compares alternative configurations using their response values. The
method retains the configuration resulting in a more optimal value in each successive
comparison. Simulated Annealing compares the responses of alternative configurations
using an acceptance test. The test accepts alternative configurations based on the
difference in response value. It may, according to a probability density function, retain
less optimal alternatives. This ability to occasionally degrade the solution allows the
algorithm 1o escape poor local optima; an ability missing in the Local Search method.

Theoretical arguments prove that Simulated Annealing will converge to the true
optimum given an infinite run length and using a specific acceptance test. In practice, the
algorithm runs for a finite length and results in a near-optimum solution using various

acceptance tests. These results pertain solely to deterministic problems. What happens




when the problems are stochastic? Some research has been done showing the promise of
adapting the algorithm for these problems, but much has yet to be explored (13:395).
The existing literature does not address the relative performance of differing acceptance
tests applied to stochastic problems. This research will investigate the performance of

seven such alternatives.

1.3. Scope

Three representative problems are modeled using the SLAM 1I simulation language.
The performance of Local Search and Simulated Annealing with seven alternative
acceptance tests are compared for quality and efficiency in each of these problem
instances. The estimated optimal response measures solution quality. The actual
computer time used is the chosen measure of computational efficiency. Comparisons
between the two measures can then be used to infer which of the algorithms perform

better than the others for the models investigated.

1.4. General Approach

Three separate simulation models are used to compare the different algorithms. The
first model, the timing of traffic lights, is a simple model with only two decision variables.
The simplicity of this model enables the development of an overall approach. The

approach itself concerns four major components:




1. Formulation of the simulation model,
2. Formulation of the heuristic algorithm,
3. Selection of the acceptance tests, and
4. Development of the comparison tests.

The second model, the configuration of job-shop machines, is a more complicated
model with six decision variables. The real-world complexity of this model and large
vanations in response help substantiate the general methodology for optimizing stochastic
problems. The machines are configured so that parts can enter and leave the system
freely. This is an open-queuing network. The third simulation model alters the flow of
parts by fixing the number in the system and never letting them leave. This is a closed-

queuing network.

1.5. Sequence of Presentation

A review of the current literature provides a foundation for the methodology. The
review begins with the methods of heuristic programming and Simulated Annealing and
then proceeds to the results of theory and practice. A review of stochastic optimization
bridges the conceptual gap between analytic and stochastic models. A methodology and
several alternative acceptance tests is developed for Simulated Annealing. The three
problems discussed test the methodology by generating empirical data and inferring
relationships among the alternatives. These results are used to motivate additional

Simulated Annealing research.




L Literature Review

The majority of the literature concerning Simulated Annealing deals with
combinatorial problems whose response to a given set of inputs is constant. Although
simulation problems differ in the nature of the response, the results outlined in the litera-
ture provide a starting point for adapting the algorithm. The results detail both the
theoretical performance and the actual empirical performance of the algorithm for a
number of problem classes. These results guide the methodology developed in a later
section. First, however, a discussion of heuristic algorithms introduce the basic concepts

needed.

2.1. Heuristic Algorithms

A heuristic algorithm compares two responses, decides which one is more optimal,
and concludes that the corresponding configuration is better (20:35). The simplest way to
find an optimum using this strategy is to compare the responses from all possible
configurations and pick the best one, a technique called exhaustive enumeration.
Unfortunately, most problems have far too many possible configurations to apply this
technique within reasonable time limits. For instance, a problem with m decision variables,
each with n possible values, has n possible configurations (19:73). If n=m=6 then there
would be 46,656 configurations. Assuming it took one second to evaluate each response,
it would take thirteen hours to complete the algorithm. If the number of possible values

increased by just one, n=7, the time required to complete the algorithm would increase to




seventy-eight hours. When the solution time increases exponentially as the problem size
increases linearly, the problem is classified as NP-complete (non deterministic polynomial
time complete) (18:671). Clearly, exhaustive enumeration is impractical for many real-life
problems.

Although real-life problems may become very large, they are nevertheless bounded
in size and constrained in time (20:35). There are always a finite number of possible
configurations to examine and there is always a finite time within which the problem must

be resolved. These restrictions allow us to observe that:

Problems having the same mathematical model, but different bounds on either the
size of their input domain or the computing time, must be considered as different
problems and hence may require very different heuristic algorithms to
solve.(20:35)

Certainly exhaustive enumeration guarantees that the optimum will eventually be found.
In many cases, however, the best configuration obtained in a given number of hours,
minutes, or even seconds must be used instead of the true optimum. The objective of an
algorithm tailored to execute withir  specified time limit must replace optimality with
acceptability (20:40). For instance, NP-complete problems often require too much
computing time to solve for the exact optimum, so a near-optimal solution must be
accepted. The only justification for the claim that a given solution is acceptable comes
from the empirical evidence obtained from sample problems and the reliability implied by
that evidence.(20:42)

Assuming that several algorithms can be formulated to execute within a specified
time iimit for a given problem instance, the question remains as to which algorithm is best.
S. Lin preposed a method to compare different heuristic algorithms by focusing first on

solution quality and then on efficiency using these qualitative definitions:




DEFINITION 2.1: DOMINATE
If the solution produced by algorithm A has a high probability of being closer to
the optimum than the solution produced by algorithm B, then A dominates B.

DEFINITION 2.2: COMPETE
If neither algorithm A nor algorithm B dominates, then A and B compete.

DEFINITION 2.3: EFFICIENT
If algorithm A produces solutions substantially faster than algorithm B, then A is
more efficient than B.

DEFINITION 2.4: BETTER
If algorithm A dominates algorithm B or if algorithm A is more efficient than
algorithm B, then A is better than B (20:40-41).

For a given problem instance with alternative algorithms, the performance of each
algorithm can only be determined through experimentation, consensus, or structural
analysis (20:41). Each person can evaluate the alternative algorithms using their own
judgment, but an accepted method for comparison lends more credibility to the results.
Kirkpatrick er al. suggest that the average performance of competing algorithms provides
the most practical basis for comparison (18:672). Measures of solution quality and
efficiency constitute the performance measures used for comparison in this thesis. The
alternative algorithms include Local Search and variations of Simulated Annealing.
2.1.1. Local Search

Local Search, the simplest alternative algorithm, guarantees that a locally optimal
configuration will be found. To understand why this is so, some nomenclature must be
presented. Let S represent the set of all possible configurations of decision variables and s
represent a single configuration, s €  S. Define the distance to be minimized between

configurations s; and s (20:38):




d(s,,s;) = 4{the number of objects in s, notins, + @

the number of objects ins, not in s, }

Where a decision variable is the number of objects of a certain type, a subset of the
configuration of objects. Define the neighborhood of a configuration s as the subset of

configurations in S that lie within a specified distance, designated by A  (20:37-8):
N(s) = {s" d(s,s')<A and s'€ S} (2.2)

Local Search proceeds from these definitions. First, an initial configuration is
selected at random from S and denoted the incumbent optimal configuration, s;, and its
response y; determined. Next, a neighboring configuration is selected at random and
denoted the challenger, s’;,and its response y’; determined. If the challenger's response is
closer to the objective than the incumbent's response, then it replaces the incumbent,
otherwise it is rejected. Challengers are tried successively until an incumbent is found
such that none of its neighbors' responses are closer to the objective. The final incumbent

is, by definition, a local optimum (20:37-8).




Solution quality depends heavily on the starting location in the configuration space
S. Once the method reaches a local a optimum, it cannot escape and the result may be a
poor solution. To overcome this limitation, an analyst typically applies the Local Search
algorithm from various initial configurations and chooses the best solution as the final w
optimal configuration. When the configuration space contains many poor local optima,
Local Search yields poor results.

2.1.2. Simulated Annealing

The Simulated Annealing algorithm is a variant of Local Search that overcomes this
problem. In Local Search, only challenger configurations that improve the objective are
allowed to replace the incumbent. Simulated Annealing relaxes the acceptance of
challengers to include "some" that are worse alternatives, enabling the algorithm to escape
poor local optima.

The method determines when a less optimal configuration should be retained by
emulating the physical process of annealing. It simulates a physical process, which is the
reason for naming the technique "Simulated Annealing." A group of researchers led by
Kirkpatrick is credited for originally developing the algorithm and Cerny is credited for
establishing its usefulness in solving combinatorial problems (18: 7).

2.1.2.1. Physical Annealing.
Annealing improves the pliability of a metal or alloy by minimizing internal stress.
The metal is heated to a specified temperature to relieve the stress and then cooled slowly
to room temperature to keep the stress small. Fast cooling, known as quenching, induces
large amounts of internal stress which causes brittleness. A metal can be shaped by using
the annealing process to relieve the stress of working it (2:429).
Internal stress results from the build-up of potential energy stored in the

configuration of atoms. Heating the metal allows the atoms to move randomly into many

10




configurations. Slowly cooling the metal establishes and maintains the atoms near thermal
equilibrium.

2.1.2.2. Thermal Equilibrium.
When a metal is in thermal equilibrium, the probability of a configuration of atoms having
a given potential energy is determined by the specified temperature. In equilibrium, at
temperature T, the probability of atoms being in a state with a potential energy E| is given

by the Boltzmann distribution (21:1088):

1
P(E =E)=——e BT (23
(Energy=E,) Z(T)e (2.3)

Where kp is the Boltzmann constant, a constant of proportionality which converts units of
temperature into units of energy (6:83). This conversion makes the exponent
dimensionless. When applied to combinatorial problems, Simulated Annealing drops this
particular constant since the response value does not measure energy.

As time progresses, a given configuration of atoms may transition to a neighboring
configuration with potential energy E7. The likelihood of transitioning depends upon the
change in potential energy £5- E and the temperature 7. If the transition would result in
a lower potential energy, then the transition occurs. If the change in energy would

increase the system's potential, then the transition occurs with probability (29:7):

P(Transition) = e“EEV4T (2 4)

This equation represents the a priori probability that the system will transition to the new

configuration (21:1089). It provides the basis for determining the likelihood of a transition

11




for any process in equilibrium. For any system in equilibrium at a given temperature, only
two elements are needed calculate the probability: a configuration and a value for the
resultant energy (7:49).

2.1.2.3. Analogy.

Simulated Annealing uses this basis in determining the acceptance of a detrimental
move. Combinatorial problems have easily recognizable configurations that represent
solutions. These solutions do not, in general, result in a measurable energy. The energy
term is meaningless. Each configuration results, instead, in a response value measured in
units that are problem specific. If the response value is used in place of the energy, then
the constant of proportionality in Equation 2.4 relates different quantities. This constant is
dropped and the temperature is replaced with a "temperature” function, T.

In physical annealing, the temperature determines the average energy of the metal. |
When the system is in equilibrium, the actual energy is near this average energy. As the
temperature is lowered, the average energy is lowered until the metal reaches a ground
state. Simulated Annealing mimicks the physical process. The atoms in the metal are
equivalent to the decision variables in a combinatorial problem. The atomic structure is
equivalent to a configuration of decision variables. The energy is equivalent to the
response value. The temperature is equivalent to a temperature function, a control
parameter that determines an average response value when the combinatorial system is in
equilibrium. As the control parameter is lowered, the average value of the response is
lowered. Eventually, the process settles on a value at or near the global minimum.

Let the objective value for an incumbent's response be given by y;, and a challenger's
response by y.. For any given problem in which the objective is to minimize the response,

the probability of accepting a challenger configuration is given by:
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. 1 ;A20
P(Transition) =

AT A<O where A = y, -y (2.5)

And in order to maximize the response:

; A20

AT A <O where A = y -y, (2.6)

P(Transition) =

In either case, the temperature T represents a decreasing function with the number of
challenger configurations. Initially, the a priori probability of accepting detrimental moves
is high, and gradually the probability decreases until none of the detrimental moves are
accepted.

Many different functional forms have been proposed for decrementing the
temperature, for controlling the cooling rate (9:7). Ideally, the temperature will maintain
equilibrium and converge towards the optimum within a reasonable number of iterations.
Although theory may guide the selection of a temperature function, empirical results often
prove more useful when choosing among several alternatives. The average performance of
an algorithm using a given temperature function can be measured empirically once the

constants have been tuned.

2.2. Theoretical Results

The role of theory in heuristic methods is to provide some reassurance that the

method converges to the exact optimum in an infinite limit (1:vii). Certainly if the method
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does 1.0t converge when taken to an infinite limit, then any candidate obtained in a finite
limit will not be close to the true solution. At present, Simulated Annealing theory
provides this reassurance through convergence proofs for two general classes of cooling
schedules. Simulated Annealing can be formulated in two fundamental ways and the proof
for convergence depends upon which formulation is used.

In either case, however, the theory of Markov processes must be used. Consider the
way in which Simulated Annealing progresses from one incumbent solution to the next.
There is some probability that a given neighbor will be accepted as the incumbent. The
same relationship holds for a Markov Chain. Technically, a Markov chain relates any pair
of outcomes by a conditional probability. The probability of going to state j on the k-th
trial is conditioned on being in state i on the (k-1)-th trial, p,-j(k-l, k). The cumulative

probability of being in state j on the k-th trial is given by (29:13):

P;(k)=3 P(k=1)p;(k~1k) (2.7)

This essentially states that the probability of being in state j on the k-th trial depends on a
relationship that involves the likelihood of being in any given state on the previous trial
times the probability of transitioning from that state to the new state in one step. A
Markov chain is homogenous if pij(k-1,k) does not depend on k (the one-step transition
probabilities remain constant). Otherwise the Markov chain is nonhomogeneous (29:12-
13). These are the two classes of cooling schedules for which existing theory proves

convergence. The homogeneous case is generally easier to prove.
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2.2.1. Homogenous Theory
The proof for convergence of Simulated Annealing using a sequence of
homogeneous Markov chains requires enough runs at each temperature setting to ensure
homogeneity. As a consequence of constant pjj. the cumulative probabilities approach

stationary values, & j» regardless of the original starting point (27:160):
n; =Y mp;, forallj; Y m =1 (2.8)
] !

This requires that each Markov chain be irreducible (each configuration is
reachable from every other configuration in random sequences of trials), a requirement
that Metropolis demonstrated for a process in equilibrium (21:1088). As a result of these
conditions, there is a non zero probability of reaching a given configuration from any other
configuration in an infinite number of trials.

The proof, stated in simple terms is this: An infinite sequence of Markov Chains,
each of infinite length, will converge exactly to the optimum (26:326-327). The principal
use of this theorem is not so much to prove that a homogenous algorithm converges to the
exact optimum as it is to qualify the characteristics of the algorithm. In the case of
homogeneous algorithms, a sufficient condition for convergence is to make the length of
each Markov chain extremely long. In practice, simulated annealing cannot reach
equilibrium within a finite length Markov Chain (26:313). The best, then, that
homogenous algorithms can do is to converge as rapidly as possible to the stationary
probability for a fixed temperature. The acceptance function for a minimization problem
with the fastest rate of convergence is given by Equation 2.5. Unfortunately, homogenous

theory does not indicate a way to compromise the infinite length Markov chain within
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practical limits. The length of each chain as well as the length of the sequence of Markov
chains depend on trial and error experience.
2.2.2. Nonhomogeneous Theory.

The nonhomogeneous theory takes a somewhat more practical approach to
qualifying algorithms. The requirement that each Markov chain reach equilibrium at each
temperature is dropped (26:316). Rather than having a stationary transition probability
that is independent of the initial configuration, nonhomogeneous theory simply requires
that the transition probability remains independent of the initial configuration. It has been
proven that an algorithm with the following temperature update function will converge to

the exact optimum in an infinite sequence of trials (26:303)

T(t)=", 29

log(t+1

where ¢ is the number of the current trial, 7y is a constant that adjusts the probability of
acceptance (which must be at least 1 to prevent a divide-by-zero error), and 7y is another
constant which must be tuned for a particular problem instance. Note that each Markov
chain in the sequence is of length one, a single trial. Unfortunately, the sequence
generated by this update function converges much too slowly to be of any practical use
(26:327). Table 2.1 shows how slowly the algorithm converges for the parameter settings
tp=1,andA =-1.

Ultimately, it is the actual performance of an algorithm, whether it mimics the
homogeneous or the nonhomogeneous theory, and the artful tuning of that algorithm to a
given problem instance that matters. After all, the objective of this he_ristic algorithm is

to find an acceptable solution within the limits of computing time.
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Tral T(t) = P(Transition) =
Number 10/log(t+1) e-1/T(1)
100,000 2.00 0.61
200,000 1.89 0.59
300,000 1.83 0.58
400,000 1.78 0.57

TABLE 2.1

2.3. Empirical Results

Johnson et al. evaluated Simulated Annealing formulations and compared their
performance with competing algorithms for several problem classes. Both the
considerations of problem formulation and the results of these analyses provide an
empirical foundation for the Simulated Annealing methodology to follow.

2.3.1. Problem Formulation

Kirkpatrick et al. suggest that there are four components needed to implement a

Simulated Annealing algorithm in practice (18:779):

1) A description of a system's configuration,

2) A generator of trials,

3) A quantitative objective function,

4) A schedule of "temperatures” and "times" over which the process is to be
annealed.

These constitute the problem formulation. Initially, a concise description of the system is
required--which is the same as finding the input variables affecting the process and
determining the relationships among those variables. The description requires both

defining the decision variables and limiting the ranges those variables can assume.

17




The set of decision variables also implies a neighborhood structure. Given a
configuration of decision variables, neighboring configurations can be generated by
changing the values of those decision variables within a specified "distance" (Equation
2.1). For example, the configuration of a satellite may consist of five sensors, three of
type A and two of type B. A neighboring configuration can be generated by using two
sensors of type A, 5, and three sensors of type B, s5. The "distance” would be computed
by:

d(s,,s,) = %{the number of objects in 5, notins, +
the number of objects ins, notin s, }
=4{1 Type A Sensor + 1 Type B Sensor}
=1

Another configuration, 53, may lic a greater distance away, d(s},s3) = 3. If the
neighborhood size is specified to lie within a distance A = 2, then s would be a neighbor
of 57, but 53 would not be a neighbor.

The literature disagrees on the best specification for this neighborhood size. An
empirical study suggests that smaller values perform better than larger values (8:546). A
theoretical study suggests that a dynamic value performs better than a constant value
(initially large but decreasing as time progresses) (33:183). The neighborhood size plays a
large part in defining the total number of neighbors, but it is not the only consideration.
Typically, with a fixed value for A , the number of neighbors increases with problem size.
Clearly, the selection of a neighborhood size for a given problem rests with the problem
solver and is usually determined through trial and error.

Once the neighborhood size has been selected, a method for generating trials from a

random starting configuration can be developed. The original Metropolis procedure used
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a random generator of trials to simulate the randomness of physical processes. The
generator required each decision variable to be perturbed some random distance from its
incumbent state but within the limiting distance of the neighborhood (21:1088). The
problem with randomly generating trials is that the same configuration of decision
variables may be tried several times before exhausting all possible configurations within
the same neighborhood--thereby wasting computing time. Why retry a configuration once
it has already been rejected while there are still configurations which have yet to be tried?

The theory supporting homogeneous algorithms requires that each Markov chain be
irreducible and aperiodic. This means that the one-step transition probabilities must
remain constant at each temperature setting. In order to maintain this requirement, the
algorithm must select neighbors at random.

Fortunately, nonhomogeneous algorithms do not need to meet this strict
requirement because the supporting theory does not require the one-step probabilities to
remain constant. These algorithms can take advantage of more efficient trial generators
(28:396). Imagine that you are in a labyrinth and you must decide how to proceed at each
intersection--you prejudice your tms so that you spend less time retracing your steps.
Likewise, more efficient trial generators bias the search pattern within a neighborhood to
minimize computer time wasted on repeated configurations. Johnson et al. found that by
using a structured trial generator they were able to improve the solutions, "almost as much
as one would obtain by doubling the running time and staying with the standard method
(15:885)." The nature of the bias can affect the performance of the algorithm for a given
problem and must be determined by experience and intuition.

Once the trial generator has been established, a method for calculating the value of a
configuration must be devised. The form of this function depends on the measurable

effects from the system, the availability of actual data, and the objectives to be achieved.
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There may be various output measures and several objectives that need to be addressed.
The response function can combine these factors by means of a weighted sum. The sign
and coefficient of a factor would reflect its relative importance in the overall goal.

After caiculating a number representing the true value of a given configuration, the
algorithm can proceed with its fundamental comparisbn of the incumbent and challenger
configurations. The acceptance function makes this comparison by determining the
overall likelihood of accepting a challenger at the given temperature with a given response
value difference. Recall that the temperature determines an equilibrium distribution of
response values. A sample taken from a uniform {0,1] distribution represents the
likelihood of a specific challenger, a random draw from the equilibrium distribution. If the
sampled value is less than the overall likelihood, then the challenger is accepted.
Otherwise it is rejected and the incumbent remains the same. The temperature function is
defined as a decreasing function cf r and bounded so that the algorithm terminates within a
finite number of trials.

All four of these inter-related components work together to specify a Simulated
Annealing algorithm: a configuration of decision variables that describe the system; a
generator of trials that permutes the incumbent configuration; a quantitative objective
function that measures the system's response; and an annealing schedule to search the

configuration space. Figure 2.1 shows these relationships.
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2.3.2. Analyses
Johnson er al. formulated Simulated Annealing algorithms for several problem
classes including Graph Partitioning. Graph Partitioning is NP-complete -- the computing
time required for an exact optimum increases exponentially as the problem size increases
linearly. Reviewing this formulation provides insight regarding the actual specification of
the Simulated Annealing Algorithm. Before discussing the problem in detail, some graph

theory nomenclature must be reviewed:

DEFINITION 2.5 (14:7): Graph G
A pair of sets (V,E) where V is nonempty, and E is a (possibly empty) set of
unordered pairs of elements of V. At most one edge may join two vertices.

DEFINITION 2.6 (14:7): Vertices V(G)
The elements ve V. Let p denote the number of elements in V.

DEFINITION 2.7 (14:7): Edges E(G)
The elementse e E. Let g denote the number of elements in E.

DEFINITION 2.8 (14:8): Adjacent/Neighbor
If the vertices v and v) are incident with the same edge e, then v; and v are
adjacent, or neighbor each other.

DEFINITION 2.9 (14:8): Incident
If a vertex vy is an endpoint of an edge e, then v; is incident with e.

Graphically:

FIGURE 2.2: A GRAPH
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The Graph-Partitioning problem can be stated as follows: Given a Graph G,
partition the vertices of G into two sets of equal size. The objective of the partition is to
minimize the number of edges in G that have vertices in both of these sets. The response
function, y, is simply the number of edges with this property. Figure 2.3 shows one

instance of the problem:

FIGURE 2.3: GRAPH PARTITIONING

The problem formulation used by Johnson er al. is just one way to apply Simulated
Annealing and may not be the best implementation for the Graph Partitioning problem.
Nevertheless, it illustrates the relationships among the four components of problem
formulation. Their formulation is as follows:

1) System Configuration: The decision variables are the assignments of vertices
V],....Vp to partitions Pj and P. Decision variables can be assigned values of 1 or 2,
representing P and P respectively. The neighborhood size is one. This means that a
neighbor of the incumbent configuration can be obtained by simply changing the
assignment of a single vertex. This scheme occasionally unbalances the partitions so that
one set contains more vertices than the other. The algorithm accounts for the imbalance

through a penalty function. The penalty function adds to the original response function in
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order to bias challenger configurations. When the partition is out of balance, the penalty
function forces alternatives towards equal partitions (15:867,870).

2) Generator of trials: Select a vertex at random and change its current assignment
(15:870).

3) A quantitative objective function: The number of edges with vertices in both sets

P} and P plus an imbalance factor times the number of vertices out of balance (15:871):

y(8)=|{{E ={v,,v,}:v, =1Av, =2)|+0.03{ve B} - {ve R)| (2.10)

4) Schedule: Establish an initial "temperature” so that 40% of less optimal trials are
accepted, a value determined through experimentation. Set the length of each Markov
chain to sixteen times the number of neighbors within a neighborhood size of one. At the
end of each chain, reduce the temperature by five percent. Terminate the algorithm when
five concurrent Markov chains accept fewer than 2% of the trials. All of these tuning
parameters were selected through a trial and error process and these values were deemed
best (15:872). Whether or not this is a good algorithm, in the sense of definition 2.5,
cannot be decided for any implementation of Simulated Annealing (15:869).

Johnson et al. compared the performance of this algorithm against the performance
of Local Search and the Kemighan-Lin algorithm, the recognized benchmark for the
Graph Partitioning problem (15:870). They performed 1000 runs of each of these
algorithms on random graphs formed with 500 vertices and averaging 1196 edges. The

results were:
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Algorithm Average Objective Average CPU Time
(1000 Cases Each) Value (sec)
Local Search 280 1.0
Kernighan-Lin 235 3.7
Simulated Annealing 215 360.0
TABLE 2.2

Are these competing algorithms? Clearly if the computing time is so limited that
Simulated Annealing cannot complete a single case, then it cannot compete with the other
two algorithms. On the other hand, if there is enough time available to run one case
through Simulated Annealing, there is enough time to run 360 cases of Local Search or
100 cases of Kernighan-Lin. To compare the algorithms in the latter case, Johnson et al.
equalized the running time over the algorithms given five cases of Simulated Annealing.
Their results showed that both Simulated Annealing and Kernighan-Lin dominate Local
Search and that Simulated Annealing and Kemnighan-Lin compete with each other.

This study illustrated the general approach to formulating the Simulated Annealing
algorithm, highlighting the fact that any implementation is highly dependent on the
judgment of the problem solver. It also validated the comparison of two algorithms by
adjusting the computing time first. In any realistic problem, the available computing time
will dictate which algorithms to implement. Once the algorithms have been adjusted to the
time constraint, then the solution quality can be measured and the best competing
algorithms determined. This approach is be used for this thesis.

How should Simulated Annealing deal with the effects of a stochastic response?

The following section addresses these considerations.
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2.4. Modeling a Random Process

If a system is stochastic, then the model should respond like a random variable
rather than like a deterministic function. In this case, the "value" of a given configuration
of decision variables cannot be measured with a function, but must be estimated with a
random sample. Two fundamental concepts must be examined to determine how a
problem solver can 1) model a random process, and 2) compare two configurations using
random samples of the system's response.

Generally, deterministic models represent processes on a gross scale while stochastic
models represent processes on a small scale (21:14). For example, a set of differential
equations can be used to model analytically the mixing of two fluids. Although the model
describes the general behavior of the fluids, it would not describe the minute behavior--the
Brownian motion in the process. A simulation model could account for the Brownian
motion and result in a more detailed model (21:11).

Often the goal of a stochastic model is to capture the minute behavior of a process.
The problem solver may need to employ a simulation model to do this. Simulation,
however, requires much more computing time to solve a given problem than a
conventional technique would require (12:53). The reason for the increase in computing
time is this: simulation recreates the main elements of a process within the controlled
environment of a computer and uses pseudo-random representations for the truly random
factors (21:12). This means that a single run may not adequately represent the
configuration. The more a process varies, the more inadequate a single run becomes. To

overcome this limitation, a random sample based on batched observations can be used
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(25:724-725). Each function evaluation in the deterministic case corresponds to batched
observations in the stochastic case.

Within the system there may be any number of random factors. Data must be
collected for each factor and a probability distribution fitted to the observations. A
uniform pseudo-random number seeded into an inverse form of a given distribution
generates one "observation” of that random factor (25:708). Matching probability
distributions to random factors, only one part of validation, requires a great deal of work
to ensure that the overall process is accurately modeled.

Assuming that a suitable simulation model has been developed and validated, an
assumption that this thesis makes for the problems it considers, then the problem of
optimizing the response must be addressed. The most straightforward, although naive
approach, would be to substitute an estimate of the response for the constant response in
an optimization technique designed for deterministic models (32:595). Jorge Haddock
and John Mittenthal successfully performed one such study using Simulated Annealing and
a steady-state mean from a simulation for each estimate (13:389). The problem with using
this naive approach is that of picking an adequate sample size to ensure that the estimate is
meaningful. The need to take a random sample rather than a single outcome implies that
the computing time increases with the size of the sample (4:199). Therefore, the sample
size must be large enough to provide a meaningful estimate of the response but small
enough to keep the algorithm within computing limits.

The sample size depends naturally enough on the process itself. If the process
varies a great deal, a larger sampie would be needed. If the process did not vary, it would
be constant -- requiring only one outcome. Recent Simulated Annealing theory states that

a sufficient control on the variability of the response requires that the variance of the
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estimate go to zero faster than the temperature function (26:329). The estimate's variance
is given by (17:2-37):

E. 5
s'=——3 (.- @1D)

=]

Where m is the number of observations in the estimate, y, is the value of each observation,
and ¥ is the mean of the observations. Clearly, one way to decrease the variance of an
estimate is to take more observations. The number of observations must approach infinity
as the variance approaches zero.

As with previous theoretical results, this result may not give any practical guidance
except to provide some reassurance that Simulated Annealing is tolerant of some "noise”
in the estimate. In practice, the available amount of time will dictate how small the
variance can be made. Furthermore, there is a trade-off between the accuracy of each
estimate and the number of trials in each annealing run. A trade-off that can only be
resolved by trial and error. The usefulness of Simulated Annealing for stochastic models
must be shown empirically and through practical application.

2.5. Summary.

This literature review provides the foundation for a Simulated Annealing method
that is applied to three simulation models. The empirical studies reviewed show how to
formulate a Simulated Annealing algorithm, giving the insight needed to devise alternative
algorithms. The experimental results substantiate which alternative algorithms dominate

and which ones compete with each other. The comparison techniques reviewed provide




the measurement needed: the average performance as measured by solution quality and
efficiency. Existing Simulated Annealing theory gives the reassurance that such
algorithms converge to the exact optimum, at least when the problems are deterministic.
As yet, there has been little research into the adaptation of Simulated Annealing for
optimizing simulation models. What little that does exist from the fields of simulation and
Simulated Annealing theory suggests nothing to prevent such an adaptation. The purpose

of this thesis is to explore alternative ways to make the adaptation effective.
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L. Methodology

The methodology consists of four fundamental parts: the simulation model, the
Simulated Annealing algorithm, the alternative acceptance tests, and the companson
between those alternatives. The simulation model captures the key elements in the process
to be optimized so that trial configurations can be evaluated. The Simulated Annealing
algorithm incorporates the simulation model into a common programming structure so
that the decision variables can be optimized. This common structure not only permits
alternative acceptance tests to be tested, but also enables Local Search to be implemented.
The alternative acceptance tests explore the behavior of differing probability distribution
functions. This behavior affects the solution quality and computing efficiency of the
algorithm. The performance of these alternatives compared with the performance of Local
Search provides some justification for using Simulated Annealing. Each of these parts is

presented in more detail.

3.1. The Simulation model

The simulation model is at the heart of the methodology because it represents the
process itself. Although a simulation model can be stated in general terms, the Simulated
Annealing algorithm depends on the specific simulation tool used by the problem solver.
The fist step is to select a simulation language that can be tailored for optimization -- such
as SLAM II (25:759). The next step is to develop each simuiation model using SLAM II

in such a way that the input variables can be modified between simulation runs. The




SLAM language uses FORTRAN subroutines external to the simulation model to control
these modifications. The subroutines are called user inserts.

SLAM II scenarios consist of four pieces: the scenario definition, the control
statements, the network model, and the user inserts. The scenario definition simply links
all of these pieces together. The control statements specify certain initialization conditions
and executive constraints. The network model describes the process in terms of the input
variables and generates the response value. The appendices contain the details for each of
the simulation models presented.

3.1.1. The Timing of Traffic Lights.

The first of the three simulation models, the timing of traffic lights, was selected for
two reasons: 1) it is simple, and 2) it has already been used for a case study in simulation
optimization. The model is simple because it requires only two decision variables, the
"green" times for each traffic light. The objective value is the average time a car must wait
at either traffic light. The approach used in the SLAM study conducted by Pegden and
Gately gives additional background needed to develop the Simulated Annealing algorithm
(24:18).

The traffic light prcblem originated in A. Alan Pritsker's text on SLAM (24:22).

The system modeled is a two lane road which is undergoing repairs along a 500 meter

stretch, shown in Figure 3.1. Traffic must be regulated along this stretch since only one
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FIGURE 3.1: REGULATING TRAFFIC
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lane is available. In order to regulate traffic, two traffic lights have been placed so that
one is at either end of this one-lane stretch of road. A cycle must be designed for these
lights to minimize the average time a car must wait before proceeding across the stretch.
Each cycle consists of four stages: 1) both lights are red, 2) light 1 is green while light 2 is
red, 3) both lights are red, and 4) light 1 is red while light 2 is green. The timing for
stages (1) and (3) are fixed at 55 seconds while the timing for stages (2) and (4) can vary.
3.1.2. The Allocation of Machines in a Job-Shop --
Open Queuing Network.

The second simulation model was selected because it represented a complex
problem and implemented easily. The complexity comes from the size of the problem: it
requires six decision variables. These variables represent the number of machines available
at each of six machine stations. The model was easy to implement because of the similarity
between these stations. The objective value is the average total time that a part must wait
at the various machine stations while being processed. The objective is to minimize this
value. The fewer machines there are available at each station, the longer a part must wait
on average. The total number of machines available to all stations is constrained to less
than 25. The problem is to optimally allocate these machines to the six machine stations

illustrated in Figure 3.2.

FIGURE 3.2 OPEN QUEUING NETWORK
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The figure shows the flow of parts through each of the machine stations. A part
enters the system at station 1 and then proceeds to either station 2 or station 3. From
station 2 (3), the part goes on to station 4 (5) or, if it needs more work, it returns to
station 1. The part proceeds to station 6 or retumns to station 2 (3) for additional work
after completing the activity at station 4 (5). After the part completes the activity at
station 6 it leaves the system. Once the part leaves the system, the total time spent waiting
for service can be calculated.

3.1.3. The Allocation of Machines in a Job-Shop --
Closed Queuing Network.

The third simulation model is no more than a variation on the second model.

Instead of allowing the parts to enter and exit the system freely, the model contains a fixed
number of parts that cycle through the stations. Figure 3.3 shows the altered flow of

parts.

FIGURE 3.3 CLOSED QUEUING NETWORK

The model contains 30 parts that begin processing at station 1 and finish at station 6,
where the waiting time for one cycle is measured. The part proceeds through the
machines stations as before. The objective value is the total waiting time accrued by a part
from station 1 through station 6. After completing the activity at station 6, the waiting

time for a given part is reset to zero and it re-enters the system at station 1.
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3.2. The Simuilated Annealing Algorithm

The Simulated Annealing algorithm optimizes the decision variables for a given
simulation model. Its structure provides a common platform for testing alternative
acceptance functions. The generic framework built into the network models enables the
user inserts to be developed as modules. The global variables can be passed back and
forth between the user inserts through the SLAM executive. The algorithm itself consists
of four such modulc .: the executive module, the initialization module, the network
module, and the acceptance module. Figure 3.7 shows the program's flow through each of
these.

The executive module consists of the SLAM executive and its extensions. The
SLAM executive is a FORTRAN based program that defines a common block of variable
names as well as user-callable functions and subroutines.(25:389) The structure of the
MAIN program allows the user to specify input conditions, network control, and output
processing through external subroutines.

The initialization module consists of the INTLC subroutine and its subordinates.
"INTLC" is the name reserved by the SLAM executive for the initialization of a
simulation. Before executing a network model, the SLAM executive carries out the
instructions in this user-written subroutine. For the Simulated Annealing algorithm, these
instructions perform two main functions: (1) to determine a starting configuration by
calling the FIRST subroutine, and (2) to select a neighboring configuration by calling the
NEXT subroutine. The FIRST subroutine selects a starting configuration using a

uniform(0,1] random number from the RAN subroutine to permute a base configuration.
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The NEXT subroutine may or may not use a random number from the RAN subroutine,
depending on the permutation scheme used. A fixed permutation scheme is used on the
first and third simulation models and a random permutation scheme is used on the second
model. The INTLC subroutine cycles through the alternative acceptance tests. For each
acceptance test, INTLC calls the FIRST subroutine to determine a starting configuration
and successively calls the NEXT subroutine to try neighboring configurations. INTLC
reinitializes the random number seeds used by the RAN subroutine between successive
tests. This ensures that all of the acceptance tests use the same set of starting
configurations. This reduces the noise between alternative acceptance tests so that true
performance differences can predominate.

The network module consists of the network model and the EVENT subroutine
with its subordinate, the TEST subroutine. The network model generates an estimate of
the response value for a given configuration. The EVENT subroutine is used to collect
observations on the performance measure using many of the techniques reported by
Pegden and Gately: collecting observations after the simulation reaches steady-state,
batching observations to minimize variance, and varying batch sizes to reduce computer
time (24:19-22). Existing studies referenced by Pegden, Gately, and Pritsker lend
credibility to the values used to implement these techniques (24:21; 25:735).

The network model calls the EVENT subroutine when an entity passes through an
EVENT node (i.e., when a car passes through a green light or when a part completes
processing). As in Pegden's study, the EVENT subroutine is designed to collect
observations only after the first 500 seconds in order to achieve steady-state. Fifty
samples are collected for determining each batch mean. Ten batch means are collected

before the estimated change in response is determined. After the first ten batch means are




collected, the probability of accepting the challenger is calculated using the TEST
subroutine. This is a preliminary test used to determine the need for collecting more batch
means. If the probability of acceptance obtained from the TEST subroutine falls below a
predetermined threshold probability, then EVENT stops the trial. Otherwise the network
model continues to generate more observations until a total of 30 batch means are
collected or the probability of acceptance falls below the threshold. The threshold
probability is 20% for the Timing of Traffic Lights and Closed Queuing Network models
and 100% for the Open Queuing model. The threshold trades some efficiency (by
requiring more batches) for more accuracy in the estimates of challenger responses with
acceptance probabilities above the threshold. Therefore, the algorithm used on the Open
Queuing model is more efficient but less accurate than the algorithms used on the other
two models. The more accurate algorithm would have been used on the Open Queuing
model, but the lack of time made this impossible. By varying the number of batch means
used to estimate a challenger’s response, the algorithm uses less time estimating unlikely
moves. This makes the algorithm generally more efficient. Since the actual efficiency
depends on the probability returned to EVENT from TEST, there may be a difference in
efficiency among the alternative acceptance tests.

The acceptance module consists of the OTPUT subroutine and its subordinates.
"OTPUT" is a reserved name like INTLC and EVENT. Once a simulation run completes,
SLAM automatically executes OTPUT's instructions. The Simulated Annealing algorithm
uses this link both to compare estimated responses and to adjust the annealing schedule.
OTPUT compares the estimated response by using the RAN and TEST subroutines and
adjusts the annealing schedule by updating the temperature and other control parameters.
The RAN subroutine supplies a uniform{0,1] random number and the TEST subroutine

determines the probability of accepting the challenger. These values are used in the final
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acceptance test. An acceptance probability equal to 1 indicates that the challenger is more
desirable than the incumbent and must be accepted. Otherwise, the challenger is accepted
only when the random number drawn from RAN is less than the probability calculated by
TEST. If the challenger is accepted, then the PUT subroutine records the configuration
and response statistics.

The PUT subroutine not only maintains these values for the incumbent, but also for
the best-to-date. The incumbent may have a less optimal response value than the best
value obtained from all the previous trials. The best-to-date records the most optimal
response encountered. Once each annealing run completes, the OUT subroutine writes
the performance statistics, including the CPU time used, and the decision variable settings
for the best-to-date to an output file. The TIME subroutine determines the CPU time
used. The statistics recorded in the output file are used to compute the average solution
quality and the average efficiency. These performance measures are used to compare

Local Search and Simulated Annealing with seven different acceptance tests.

3.3. The Acceptance Tests

Aside from validating the general methodology of Simulated Annealing, the purpose
of this thesis is to investigate alternative acceptance functions. The first step in
formulating these variations is to code the algorithm crudely and observe the annealing
behavior. The next step is to characterize both the observed and the desired behavior.
The final step is to devise alternative acceptance tests to achieve the desired behavior.

Each of these steps are discussed in more detail.
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3.3.1. Annealing Behavior Observed.

The crude behavior of Simulated Annealing is observed by coding a selected
technique for a given problem and tracking the value of the incumbent's response over the
annealing period. Specifically, the annealing algorithm designed by Johnson et al. is used
to optimize the timing of traffic lights. Figure 3.5 shows the result of one such annealing
run.!

The crude annealing code used in Figure 3.5 implements an homogeneous algorithm
that lowers the temperature gradually in stages. A lower temperature causes a decrease in
the probability of accepting a fixed change in the response. Since the value for a good
starting temperature is unknown, the value is set arbitrarily to one. Using the same
approach that Johnson's group used, the temperature is reduced every ten trials and the
annealing run is stopped when the ratio of acceptances to rejections is less than a threshold
value. While Figure 3.5 shows an outcome of one annealing run using this algorithm, it
does not illustrate how the probability of acceptance changes over time.

It seems that a more systematic, logical approach for characterizing the acceptance
test is needed. One approach is to plot the equilibrium probability used 1o determine the
likelihood of acceptance. In order to picture how the acceptance probability decreases
over time, the trial number is plotted against the corresponding probability of acceptance
for several response value differences. The plot is termed a convergence plot since the
acceptance probability tends towards zero as time progresses (as the trials number gets

larger). Figure 3.6 shows the convergence plot for the algorithm used in Figure 3.5.

1The "Response Value" used was not the average waiting
time, but a value contrived to account for variance.
Although this response measure was not adopted later, the
results in Figure 3.8 illustrate the characteristic
annealing behavior.
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3.3.2. Annealing Behavior Desired.

Does the annealing behavior shown in Figure 3.6 coincide with the desired annealing
behavior? The Simulated Annealing algorithm used by Johnson's group is designed for
deterministic problems. The algorithm uses thousands of trial configurations and
convergence upon the optimum occurs very slowly. An acceptance plot for an algorithm
of this sort is shown in Figure 3.7. Note that the probability of acceptance is high during
the early trials and approaches zero in the latter trials. The convergence plot shown in
Figure 3.6 is does not appear to behave in quite the same way. The problem lies in the
fact that only 100 trials are shown. Why? The amount of CPU time available to find a
good solution limits the number of trials that can be made. With simulation models, the

time used in estimating each trial's response reduces the total number of trials.
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The convergence plot must be tailored to mitigate the limitations of an annealing run
consisting of, at most, hundreds of trials. The first consideration is to choose between
homogeneous and nonhomogeneous implementations. The next consideration is to
modify the chosen implementation in two ways: to accept larger changes initially and to
converge on a solution more quickly.

Theory does not indicate a preference between homogeneous and nonhomogeneous
algorithms. Nonhomogeneous algorithms, however, yield a practical advantages. Given
short annealing runs, the homogeneous algorithm would require large drops in the
acceptance probabilities between successive segments. Such large drops invalidate the
assumption of gradual cooling. The nonhomogeneous algorithm generates a smoother
plot since the temperature is adjusted at each trial. This smoothness avoids the large
discontinuities between successive segments. Therefore, a nonhomogeneous
implementation appears to be the better choice when the annealing run is time limited.

Modifications to a nonhomogeneous algorithm can allow larger changes in the
response value to be accepted initially yet converge to a solution more quickly. These
modifications constitute a compromise between pure Local Search and pure Simulated
Annealing. The resulting search is able to escape some poor local optima without
requiring too many trials. Both of these aims are related. In order to ensure the search
can escape poor local optima, some way of relating the probability of acceptance to the
model'’s specific behavior must be found. This modification is termed tuning. The
acceptance probability could not be high initially and low towards the end of the annealing
run unless the probability converges to zero in a finite number of trials. This modification

is termed forced convergence.
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3.3.2.1. Tuning.

Tuning relates the behavior of the model to the probability of acceptance so that the
search can escape some poor local optima while not accepting too many poor moves.
Tuning lies more in the domain of art than of pure objectivity. Traditionally, the selection
of a method for the tuning results from trial and error, experience, and intuition (15:869).
The tuning method adopted in this research relates the variance in the estimate to a certain
probability for a given change in the response at a set time during the annealing run. The
tuning method is explained by examining the general form of the acceptance test and
showing how the relationship is determined.

Equation 3.1 shows the general form of the acceptance test, where o represents the

tuning parameter and c(1) is a coefficient function that may be used to force convergence.

1 ;A<0
P(A,1)=

3.1
c(0)e™M. A5 Gy

The value for a. establishes the desired relationship. The given change in response (A) is
proportional to the variance of the estimate (). The certain probability of acceptance
occurs when the trial (r) reaches the half-way point during the annealing run (which

consists of n trials). The desired relationship is given by:
P(A,t)=005 A=06/3 and t=n/2 (3.2
Applying these values to Equation 3.1 gives the value for a as:

a=-(0/3)/[In(0.05/c(n/2))eT(n/2)] (3.3)
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Although this tuning method seems arbitrary, it achieves good solution quality in the
first two models studied. It allows all of the acceptance functions to be tuned in the same
way so that differences in performance are due more to differences in the functions
themselves than to differences in the tuning method used. The tuning method adopted
allows the probability of acceptance to be related to the accuracy of the response estimate.
Each response is estimated using thirty batch means. The variance of the estimate (0) is
the variance among those batch means. In practice, ¢ is estimated from the variances of
several response estimates. Each response is the mean of the thirty batch means. The

standard deviation of the mean (o(¥)) is given by (17:5-12):

o(7)=0/30 (3.4)

This implies that the change in response used for tuning (6/3) measures the difference

between means that are apart by 1.826 standard deviations of the mean. In this way, the

tuning method relates the probability of acceptance to the resolution of the responses.
3.3.2.2. Forced Convergence.

Forced convergence means that the temperature converges to zero, not in an infinite
number of trials, but in a finite number of trials. This yields another advantage. If each
trial executes within one minute and the algorithr . - 2rminates after 100 trials, then at most
100 minutes of computing time will be used. Conversely, if only 70 minutes are available,
then the algorithm can be forced to terminate after 70 trials.

The modification can be made in one of two ways: using the temperature function
(T(t)) 1o force convergence; or using the coefficient function (c(t)) to force convergence.
Examining the general form of the acceptance test shows how either modification can be

made:
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1 ;A0
P(A )=
(A.1) c(1)e™ T, A>(

(3.5)
The first of these methods use the temgierature function to force the probability of
acceptance to zero in a fixed number of trials (r). This is accomplished by letting the

temperature function range between 1 and 0, resulting in:

1 iAs0 L LASO o
e AS0’ M0 a0

P(A1)=
Note that once the trial number reaches n, the algorithm reverts to Local Search. This
modification achieves a compromise between pure Simulated Annealing and pure Local
Search. The second method achieves the same compromise by letting the coefficient

function range between 1 and 0 as the frials progress from 1 to n. The resulting algorithm

behaves similarly, except that the temperature function is unaffected:

L A0 BASO Lo
—A/QT(‘);A>O ’ ( sn)"O;A>O ( .

P(A )=
e
This allows a temperature function traditionally used on deterministic problems to be used
on simulation models.
3.3.3. Alternative Acceptance Tests Devised.

Several alternatives are developed based on these modifications. The tuning method
of Equation 3.3 is fixed for all of the alternatives. Two of the alternatives use traditional
methods without forced convergence. Three alternatives use variations on the
temperature function to force convergence. Two alternatives use variations on the

coefficient function to force convergence. Each of these alternatives is presented.
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3.3.3.1. Geometric Temperature.
The first alternative uses a traditional temperature function without forced
convergence. Itis termed geometric because each successive temperature is a proportion

of the previous temperature (9:211). The acceptance test can be given by:

;A<0

_um.); As O T(r)=r""; 0<r<l (3.8)

1
P(At)=
e

Where  is the proportion of the temperature retained from one trial to the next. Figure
3.9 shows the convergence plot for n = 100, and r = 0.995. It also shows effect of tuning
. using a tuning plot. The tuning plot shows the acceptance probability as a function of
'thc change in response value (A) for several trial numbers.

This alternative causes the acceptance probability to converge on z€ro very slowly.
The rate of convergence is not keyed to a predetermined run length (n). It depends solely
on the tuning parameter o to ensure that the algorithm converges on a solution in a

reasonable amount of time.
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3.3.3.2. Linear Temperature.
This alternative forces convergence using the temperature function. This causes the
acceptance function to converge more quickly and can be tailored to a predetermined run

length. The temperature is reduced at a constant rate going from 1 to 0 in » trials:

;A<0 n+l-t
-AlaT(), A> O; T(t)=

P(A )= l 3.9

Figure 3.9 shows the resulting convergence plot and Figure 3.10 the tuning plot.
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Note how this tuning plot reveals a wider separation among the probability curves at
different trial numbers than the previous tuning plot. This difference in shape may
correspond to a difference in performance when the annealing run is time-limited.
3.3.3.3. Adaptive Temperature.
This alternative differs from Linear Temperature by making use of the variance in
the response. The cooling rate captures the system's variability by pooling the sample
variance from the challenger and incumbent responses; the concept of a pooled variance is

derived from the same method used by a two sample #-test (17:6-16):

(3.10)

1 ;AL0 - o' Y™
P(A)= : ntlot J(m. 1)g', +(m,, -1)d',,
e

; T(t)=0'6—v—;
—AIaT(l);A>O (1)=0C'e n m,+m,_,—2
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Where ¢ is the pooled standard deviation, 62 is the sample variance for the challenger,
o'7, is the sample variance for the incumbent, m, is the number of batches used to
estimate the challenger's response, and m,_; is the number of batches used to estimate the
incumbent's response. Figure 3.11 shows the result of three different challenger variances
in the convergence plot. The plot was generated using a fixed change in the response A

= 0 /6, and a fixed standard deviation in the incumbent's response ¢',_, = C.
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The significance of this alternative lies in the effect that a change in the challenger's
variance has on the probability of acceptance. It turns out that 0{Adaptive Temperature)
=  O[Linear Temperature}/O- If the response variance does not change between trials,
then this alternative is equivalent to Linear Temperature (¢’ = G, so that  GeQ[Adapive
Temperature] = *[Linear Temperature))- If the response variance does change, then this
alternative will react by accepting trials with larger variance more readily and rejecting

trials with smaller variance more frequently. This reflects the degree of certainty implied
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by a smaller variance. Statistically, the smaller variance implies more certainty for the
same difference in response value than a large variance. Recall that the tuning method
uses an estimate for 0. This alternative modifies the acceptance probability to account for
variations in G among the trials.

3.3.3.4. Elliptic Temperature.

This alternative uses a temperature function that changes little initially and
accelerates the rate of change towards the end of the run. The functional form is that of
an ellipse. In this case, the independent variable (r) and the dependent variable (7(z)) are
always non-negative:

;A0 -1)?
T(t)= 1-"nzl) (3.11)

1
P(A’t)'—'e-A/aT(:), A>O;
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Note that this alternative preserves the shape of the Geometric Temperature plots more
than Linear Temperature and Adaptive Temperature. It constitutes a compromise
between the Geometric and Linear Temperature techniques and will help to show which
dominates.
3.3.3.5. Logarithmic Temperature.

This alternative uses another traditional temperature function without forced
convergence. It provides the basis for the next two alternatives that use the logarithmic
temperature function in conjunction with a coefficient function to force convergence. It
also provides a basis for measuring the performance differences that result. The

logarithmic temperature acceptance test is given by:

.
*

-8/, A>O; T()=1/In(t+1) (3.12)

1
P(A1)=
e
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Note that a significant difference between previous cooling rates and the logarithmic
cooling rate lies in the probabilities of the first few trials. Probabilities based on the
logarithmic function decrease rapidly in the first few trials but change gradually in later
trials. As with the Geometric Temperature, the tuning plot shows little change in the
acceptance probabilities over much of the annealing run.

3.3.3.6. Linear Coefficient.

This alternative uses a coefficient function that pre-multiplies the acceptance
probability obtained from a logarithmic temperature function. Recall that the logarithmic
temperature ensures quasi-equilibrium between trials. The intent of the coefficient is to
keep this seeming equilibrium intact, but also to scale the resulting probability according
to the trial number. This alternative forces convergence by using a linearly decreasing

function for the coefficient:

1 ;A<0

P(A)= ;
(A1) c(t)e™ M. A >0

T(t)=1/In(t+1); c(t)=n—l;-t- (3.13)

This acceptance test implies that, as the trials progress, the scaling factor reduces
each probability at a constant rate.  As with other alternatives, a different value for the
tuning parameter results from the difference in the form of the acceptance function. The
effect of this difference is to start with higher acceptance probabilities initially and reduce
them more quickly near the end of the annealing run. Figure 3.15 shows the resulting
plots. Note that the tuning plot shows a dramatic difference compared with previous
alternatives. The acceptance probabilities for small adverse changes in the response are
much less. Therefore, this alternative accepts fewer trials with small adverse changes in

the response.
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3.3.3.7. Elliptic Coefficient.
This alternative uses a coefficient function to pre-multiply the acceptance
probability. The coefficient function describes an ellipse, as before. The elliptically
decreasing function preserves more of the Logarithmic Temperature's shape than the

Linear Coefficient:

1 ;AL0 2
P(At)= ; T()=1/In(z+1); c(t)="l-;2- (3.14)

c(0)e™ W AS (O’

This alternative also has the effect of reducing the acceptance probabilities of small

adverse changes in the response. As seen in Figure 3.17, the effect is less pronounced

than with Linear Coefficient.
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The differing characteristics apparent in the convergence and tuning plots may result

in differing performance in solution quality and efficiency. Those characteristics that result

in better performance may support the development of superior acceptance functions.
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3.4. The Comparisons.

As discussed in Section 2.1, the comparison of heuristic algorithms is made for a
given problem based on their average performance. The performancs of the alternative
Simulated Annealing algorithms is measured using the average solution quality obtained
over two fixed annecling run lengths. The two best candidates for each model are chosen
and their performance is compared against Local Search. This two-stage comparison is
explained in greater detail.

3.4.1. The Simuiated Annealing Alternatives Compared.

The seven alternative acceptance functions are compared for the first and third
models and a subset of the seven are compared for the second model. In every case, the
solutions obtained from each alternative over a set of (m) starting locations is used to
compute the average solution quality. The set of starting locations is the same for each
alternative.

The average solution quality for a given alternative tuned for a set run length is
calculated as follows. First, a base solution is determined (yp). When the value for the
global optimum is known, it is used for the base value. When the global optimum is not
known, the best estimate is used. Next, the performance of each solution (y;) is measured
by taking its difference from the base value:

9; =|y, ~y| (3.19

These values are used to calculate a measure of performance that relates the differences to
the base value. This measure of performance is called the mean percent difference, given

by:
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MPD:(lOO/m)}"ia,./ y, (3.16)

il
This relative measure provides an intuitive feel for an algorithm's general performance
(21:47). The measure converts the raw difference in value to a more user-friendly
percentage. It seems more reasonable to say that an algorithm has an average 5%
difference than to simply state that the average difference is 183 (21:47). For this reason
the MPD will be used to measure solution quality among the alternative acceptance
functions.

3.4.2. The Best Alternatives Chosen.

Once the MPD for every alternative is measured, the two best alternatives can be
chosen. This is not so straightforward as it seems. Each alternative is tested at two
different annealing run lengths: m; annealing runs at nj = 100 trials, and m) runs at np =
200 trials. The longer runs provide better solutions when compared head-to-head.
However, the algorithm could be run twice at 100 trials for every run at 200 trials.
Therefore, unless the solution quality improves dramatically at the longer run length, the
shorter run is preferable. The two best alternatives at the selected annealing run length
are chosen to compare against Local Search.

3.4.3. Local Search Compared.

Unlike the first comparison, the comparison of the chosen Simulated Annealing
alternatives against Local Search is not based on the run length. Instead, the efficiency of
each of the competing algorithms is determined. This is done by measuring the average
CPU time required to converge on a solution. First, a set of starting locations is
determined. Then the time to converge on a solution for each starting location is

measured. Finally, the simple mean is calculated.
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Local Search converges quickly. Simulated Annealing converges more slowly.
Therefore, the efficiency for a single run of Local Search is much better than for a single
run of Simulated Annealing. This does not reflect the solution quality. In order to
determine which algorithm performs the best, the efficiencies must be equalized. For
instance, Local Search may take 200 seconds for each run while both of the Simulated
Annealing algorithms take 400 seconds for each run. The efficiency of the algorithms are
equalized by letting the Local Search algorithm run twice for every run of Simulated
Annealing. The solution qu.ality for Local Search is obtained by taking the best out of
every two solutions to compute each difference in solution quality (8 ;). Otherwise, the
MPD is calculated in the same way as before. The algorithm with the best solution
quality, adjusted for efficiency, is the more desirable algorithm. Sample calculations for

solution quality and efficiency are given at the end of Appendix A.

60




LY. Besyits

Each of the alternative acceptance functions is applied against three models. The
first model, the timing of traffic lights, facilitates the development of the SLAM
implementation. The results from this model are of minor interest because the model
contains only two decision variables. The results do, however, show the expected
behavior of Simulated Annealing: the solution quality dominates Local Search and
improves with longer annealing runs. This achieves the first goal of the research, to
demonstrate the viability of using Simulated Annealing to optimize a simulation model.

The second model, the configuration of machines, provides greater insight to the
advantages and limitations of Simulated Annealing. This model is implemented in two
variations: as an open-queuing network, and as a closed-queuing network. The first
variation provides little additional information about the relative merits of the alternative
acceptance tests. It does show a more pronounced improvement with longer annealing
runs. This lends credibility to the idea that one long annealing run gives a better solution
than the best solution from multiple iterations of Local Search.

The second variation allows the optimal configuration to be predicted based on the
theory of closed queuing networks. The results from this variation are completely
unexpected. Two of the alternatives are clearly superior than any of the others. These
results suggest that an even better alternative might be developed.

The results are given for each of the models. The key elements to consider are the

determination of a base value used to calculate the solution quality, the selection of the
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two best Simulated Annealing alternatives, and the comparison to Local Search. Sample
calculations for solution quality and efficiency are given at the end of Appendix A.

4.1. The Timing of Traffic Lights Model

Recall that the timing of traffic lights model uses two decision variables. Each
decision variable represents the amount of time that a traffic light remains green. The
response value measures the average waiting time for cars arriving at a road-repair
location. The traffic lights control the flow of traffic through the section of road under
repair.

Each alternative acceptance function is tried several times using this model. In order
to compare the alternatives on the same basis, the annealing run length is fixed for either
100 trials or 200 trials. Then each alternative is tried 25 times and the average
performance measured. Two settings for the number of trials show how the performance
of Simulated Annealing improves with increasing run lengths. Comparing the average
solution quality shows that all of the alternatives perform well.

4.1.1. Establishing the Base Response Value.

The average solution quality is the discriminator between the alternative acceptance
tests. In order to establish the difference between the solutions obtained and the base
value, the base value had to be found. For this problem, the base value is the global
optimum. Since the configuration space is reasonably small, the global optimum is found
by complete enumeration of the response values. These values are obtained by taking 100
batches for each configuration. Every batch contains 50 observations of the waiting time.

These values are recorded in a grid with the time for light 1 on the Lorizontal axis and the
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time for light 2 on the vertical axis. The result is a map of the responses, showing many
local optima and several global optima. The values are rounded down to the nearest
integer value in order to enhance readability. Appendix A contains this response map.

Since the smallest value obtained is 76 seconds, this value is assumed to be the
optimal response and the corresponding configurations are assumed to be multiple optimal
configurations. The observed difference in solution quality is established by using this
value and subtracting each predicted value from it. The observed values are averaged
using Equation 3.16. j

4.1.2. Comparing the Alternatives.

After establishing the optimum response value and generating the solutions, the
performance is measured. Appendix A contains the solutions obtained and the differences
from the base value used to calculate the average solution quality. The results of applying
the alternatives against the timing of traffic lights model are summarized in Table 4.1. The
Simulated Annealing alternatives all found solutions within about 4% difference given 100

trials and within about 3% difference given 200 trials.

Alternative MPD at 100 Trials MPD at 200 Trials
using 25 Starting Locations ] using 25 Starting Locations
Geometric Temperature 4.17 3.32
Linear Temperature 4.13 2.99
Adaptive Temperature 4.19 3.04
Elliptic Temperature 4.38 3.04
Logarithmic Temperature 4.07 2.93
with Linear Coefficient 4.79 3.18
with Elliptic Coefficient 3.89 3.17

TABLE 4.1 SOLUTION QUALITY
This demonstrates the expected behavior of Simulated Annealing: that longer runs

give better results. Note that, in this case, the additional trials only improve the solution
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by about 1%. For this problem, it appears that the shorter annealing runs are preferable
since two iterations can be performed for each of the longer runs.
4.1.3. Choosing the Best Alternatives.

The two best alternatives at the shorter run length both use a logarithmic
temperature function. The best alternative uses an elliptic coefficient function to force
convergence with an average 3.89 percent difference. The next best alternative,
Logarithmic Temperature, does not force convergence. It achieved a 4.07 percent
difference. Note that Logarithmic Temperature is the dominant alternative at the longer
run length with an average 2.93 percent difference. The convergence and tuning plots for
the Elliptic Coefficient approximate the shape of Logarithmic Temperature's plots more
closely than Linear Coefficient. These observations indicate that tuning alone is sufficient
to achieve good results. The forced convergence methods do not appear to have a
significant affect on performance in this problem.

4.1.4. Comparing with Local Search.

The comparison of the two best Simulated Annealing alternatives against Local
Search is made in two steps. The first step is to measure the efficiency of ea~" algorithm.
The measure is the average CPU time required by an algorithm to converge on a solution.
Since Local Search converges quickly, multiple runs can be made for every run of
Simulated Annealing. Table 4.2 shows the results.

Local Search is applied seven times for every iteration of Simulated Annealing with
a combined CPU time of 179.80 seconds on average. The two Simulated Annealing
alternatives range between 168.10 seconds on average and 185.10 seconds on average.
Note that the average solution quality obtained shows that both Simulated Annealing
alternatives dominate Local Search. Simulated Annealing with Logarithmic Temperature

and Elliptic Coefficient appears to be the most desirable algorithm.




Algorithm Starting Locations Efficiency Solution Quality
Mean CPU Time | Mean % Difference

Local Search (1 Iteration) 100 26.38 11.23
Local Search (7 Iterations) 70 (10 Solutions) 179.80 492
Simulated Annealing with 10 185.10 3.58
Logarithmic Temperature
(1 Iteration)
Simulated Annealing with 10 168.10 3.47
Logarithmic Temperature
and Elliptic Coefficient
(1 Iteration)

TABLE 4.2 COMPARISON WITH LOCAL SEARCH

4.2. The Configuration of Machines Model - Open Queuing Network

This model is an open queuing network. Recall that the model contains six machine
stations. Each station consists of several machines. The number of machines at a given
station is a decision variable. Hence, there are six decision variables. The objective is to
allocate 25 machines among the six stations so as to minimize the average processing time
for parts.

4.2.1. Establishing the Base Response Value.

The configuration space generated by the six decision variables is too large to
completely enumerate the response values. There is no theoretical basis at present for
determining what the optimum configuration should be. The only alternative left is to sort
through all of the solutions obtained and pick the minimal value. Appendix B contains the
data collected from the experiment. The lowest value, found throughout the data, is 1.48

seconds and this is used in calculating the solution quality.
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4.2.2 Comparing the Alternatives.

The open-queuing model is implemented using a random trial generator for the

Simulated Annealing alternatives. Only the alternatives shown in Table 4.2 are tried

because of time constraints in performing the research.

Alternative MPD at 100 Trials MPD at 200 Trials
usiggﬁ25 Startins}ncations using 25 Starting Locations
Linear Temperature 103.70 14.27
Adaptive Temperature 323.95 29.14
Logarithmic Temperature
with Linear Coefficient 131.32 20.70
with Elliptic Coefficient 136.89 18.57

TABLE 4.3 SOLUTION QUALITY

The Simulated Annealing alternatives have an average difference of about 130%

given 100 trials, except for Adaptive Temperature. Adaptive Temperature performs

significantly worse with an average difference over 300%. It does, however, perform

better at 200 trials with an average difference of about 30%. Note that all of the

alternatives improve the average difference 100% at the longer run. Therefore the longer

run is preferable.

4.2.3. Choosing the Best Alternatives.

Linear Temperature dominates at the longer run with an average difference of

14.27. The next best alternative is the Logarithmic Temperature with Elliptic Coefficient.

This alternative gives an average difference of 18.57. Since all of the alternatives use a

convergence method, no conclusion about the usefulness of forced convergence can be

made. It does appear, however, that the temperature function is a better way to force

convergence than the coefficient function for this problem.




4.2.4. Comparing with Local Search.

Local Search is implemented using a structured trial generator. Five iterations of
Local Search can be run for every iteration of Simulated Annealing, on average. The
solution quality for one iteration of Local Search averages 82.48% in difference, but
improves to 37.16% when the best solution out of every five iterations is used. The

results are given below.

Algorithm Starting Locations Efficiency Solution Quality
Mean CPU Time | Mean % Difference

Local Search (1 Iteration) 40 477.05 82.48
Local Search (5 Iterations) 40 (8 Solutions) 2385.25 37.16
Simulated Annealing with 10 2320.90 16.49
Linear Temperature
(1 Iteration)
Simulated Annealing with 10 2253.60 16.96
Logarithmic Temperature
and Elliptic Coefficient
(1 Iteration)

TABLE 44 COMPARISON WITH LOCAL SEARCH
Both of the Simulated Annealing alternatives dominate Local Search with five
iterations. The solution quality improves about 20% using either Simulated Annealing
algorithm. Both alternatives are also more efficient than Local Search with five iterations.
The dominant algorithm appears to be Simulated Annealing with Linear Temperature.
This data indicates that Simulated Annealing with Logarithmic Temperature and Elliptic

Coefficient is a close competitor.
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4.3. The Conﬂguratlon of Machines Model - Closed Queuing Network

The closed queuing network is a variation of the configuration of machines model.
Instead of letting the parts arrive exponentially and depart the system after processing, the
closed network contains a fixed number of parts that never leave the system. There are 30
parts in the system. These parts cycle from station 1 through station 6, as before. Instead
of leaving the system after station 6, the parts return to station 1 and the processing time is
reset to zero.

4.3.1. Establishing the Base Response Value.

The optimum configuration is established using a PASCAL program written by Lt
Col Dietz. Given the one-step probability transition matrix (which describes the flow of
parts among the machine stations) and a configuration of machines, the program calculates
the steady-state waiting time at each station. The optimal solution is found by permuting
the configuration until the steady-state waiting time reaches a minimum. Applying the
optimal configuration to the simulation model results in a total waiting time of 15.49
seconds. Both theoretical and simulation data agree on this optimal configuration. The
PASCAL program, the results obtained from the program, and the data obtained from the
simulation model are contained in Appendix C. The base value of 15.49 seconds is used
to calculate solution quality.

4.3.2. Comparing the Alternatives.
The alternatives are implemented using a structured trial generator. The results

from the closed queuing network differ from the results of the previous two models.
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Simulated Annealing does not perform universally well. In fact, only the two alternatives
based on Logarithmic Temperature with a coefficient function performed well.

Alternative MPD at 100 Trials MPD at 200 Trials
usinLZS Startin& Locations using 10 Startinﬁ Locations

Geometric Temperature 167.28 185.33
Linear Temperature 90.91 126.62
Adaptive Temperature 186.12 131.43
Elliptic Temperature 169.72 132.54
Logarithmic Temperature 245.98 157.97

with Linear Coefficient 20.30 7.64

with Elliptic Coefficient 17.81 12.76

TABLE 4.5 SOLUTION QUALITY

Note that, except for the two alternatives mentioned, all of the alternatives
performed poorly. This may be due to the tuning method used. The tuning method in
Equation 3.3, used for the previous two models, is blindly applied to this model. In
general, the alternatives using a forced convergence technique performed better than those
using tuning alone. The results suggest, among forced convergence techniques, that a
coefficient function dramatically outperforms a temperature function. Solution quality for
these methods seems less sensitive to deviations in the tuning parameter, a.. The solution
quality improved about 10% at 200 trials in the average difference for the two best
alternatives. Assuming that this is a significant improvement, the longer run is preferable
to the shorter run.

4.3.3. Choosing the Best Alternatives.

The Logarithmic Temperature with Linear Coefficient performs best at 200 trials

with an average difference of 7.64%. The Logarithmic Temperature with Elliptic

Coefficient performs second best at 200 trials with an average difference of 12.7%. None
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of the other alternatives come close. The next best alternative is more than 100% worse

on average.

4.3.4. Comparing with Local Search.

The comparison of efficiency shows that two to three iterations of Local Search can

be run for every iteration of Simulated Annealing. Taking the pessimistic approach, the

solution quality for Local Search with three iterations is used for comparison. The results

are shown below:

Algorithm Starting Locations Efficiency Solution Quality
Mean CPU Time | Mean % Difference

Local Search (1 Iteration) 40 454.20 34.23
Local Search (3 Iterations) 30 (10 Solutions) 1388.50 19.94
Simulated Annealing with 10 1013.30 16.05
Logarithmic Temperature
and Linear Coefficient
(1 Iteration)
Simulated Annealing with 10 1137.80 12.12
Logarithmic Temperature
and Elliptic Coefficient

(1 Iteration)

TABLE 4.6 COMPARISON WITH LOCAL SEARCH

Local Search with three iterations produces a solution quality of 19.94%. Both of

the Simulated Annealing alternatives dominate with solution qualities ranging between

12.12% and 16.05%. Both Simulated Annealing algorithms are also more efficient. The

dominant algorithm, based on this data, is Simulated Annealing with Logarithmic

Temperature and Elliptic Coefficient.
4.3.5. Additional Alternatives.

The two best Simulated Annealing alternatives both use a coefficient function in

conjunction with a Logarithmic Temperature. Among the temperature functions, the
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Geometric Temperature and Linear Temperature performed best. Two more alternative
acceptance functions are devised using these temperature functions in place of the

Logarithmic Temperature. The results are given below.

Alternative MPD at 200 Trials
usirg 25 Startins Locations

Logarithmic Temperature

with Linear Coefficient 7.64

Linear Temperature

with Linear Coefficient 16.38

Geometric Temperature

with Linear Coefficient 12.58

TABLE 4.7 ADDITIONAL ALTERNATIVES
Although Geometric Temperature and Linear Temperature outperform Logarithmic
Temperature, the alternatives resulting from the Linear Coefficient function do not follow
this same preceden e. There are many other acceptance functions that may be tried. The
selection of new alternatives can be guided by the results already obtained and some

knowledge of the simulation model to be optimized.

4.4. Summary

The three models investigated demonstrate the utility of Simulated Annealing in
optimizing simulation models. Simulated Annealing dominates Local Search and improves
with increased run length. These are general qualitative remarks. The quantitative
performance of Simulated Annealing depends on the model being used. For small
problems, like the Timing of Traffic Lights with two decision variables, a short annealing

run appears best. For large problems, like the Configuration of Machines with six decision
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variables, a long annealing run seems more appropriate. In some, cases proper tuning is
sufficient to achieve good solutions. In other cases, the use of forced convergence helps
find better solutions. Simulated Annealing with Logarithmic Temperature and Elliptic
Coefficient performs well on all of the models tested. Simulated Annealing works well
for optimizing stochastic models, but the traditional acceptance functions are not always

among the best alternatives.
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Y. Conclusions and Recommendations

The research presented shows the applicability of Simulated Annealing as an
optimization technique for simulation models. The primary goal is to demonstrate how
the technique could be used with an existing simulation language, namely SLAM. A
secondary goal is to examine the affect that several alternative acceptance functions had
on performance, measured by solution quality and efficiency. No attempt is made to
justify the use of Simulated Annealing from a theoretical perspective. Rather, the
empirical results from three test cases are used to infer the practical utility of the
algorithm. The conclusions drawn as well as the recommendations for additional research

follow from these test cases.

5.1 Conclusions

The goal of demonstrating a SLAM based implementation of Simulated Annealing is
achieved as part of developing the three test cases. The SLAM implementation consists
of three parts: the network model, the control statements, and the user-inserts (of which
there were ten). A method for using generic programming structures and common
variable names allows four of the same user-inserts to be used for all test cases. The
remaining five user-inserts only need minor changes to adapt to a given model. The
control statements are also developed generically. The result is a general purpose
optimization scheme that allows both Local Search and Simulated Annealing to be

implemented.
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Experiments for each test case are conducted as follows:

1. Each of the optimization techniques was implemented.
2. The number of trial configurations was established.
3. The number of starting configurations was established
(Every technique used the same set of starting configurations).
4. The best solution found in each instance was recorded.
5. The average performance of the technique was computed.

In all three cases, some variation of Simulated Annealing dominates Local Search in
solution quality and efficiency. In the timing of traffic lights, all variations of Simulated
Annealing dominate Local Search. In the configuration of machines with open queuing,
all but one variation of Simulated Annealing dominate Local Search. In the configuration
of machines with closed queuing, only two of the seven Simulated Annealing variations
dominate Local Search. These results indicate that Simulated Annealing may have some
practical use for optimizing constrained simulation models.

There are two major concerns with applying Simulated Annealing to simulation
models: how to cope with random noise in the estimate, and how to obtain good results
within a predetermined amount of time. Seven different acceptance functions are devised,
using the concepts of tuning and forced convergence, to answer these concerns. All of the
alternatives are tuned the same way using Equation 3.3. The tuning parameter in each
acceptance function is set to a predetermined value. A specified difference in the
response values is accepted with 5% probability at the mid-way point through the trials.
That specified difference (A) is keyed to the variance in response estimates (02) by the
relationship: A = 6/3. While the tuning method is fixed, the means for forcing the
convergence of the acceptance probabilities is not: two of the alternatives use a standard
acceptance function; three alternatives use different temperature functions to force

convergence; and two alternatives use a coefficient function to cause faster convergence in
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an otherwise standard acceptance function. The three test cases demonstrate how these
different acceptance functions affect performance.

The first test case is a simple model involving two decision variables. The number
of trial configurations used to establish a solution is a relatively large portion of the entire
configuration space. The precaution of sampling each response with multiple batches
reduces the affect of random noise. As a result, the difference in most neighboring
responses is larger than the error in estimates. Local Search obtains solutions which are
5% above the optimum on average while Simulated Annealing obtains solutions 3.5%
above the optimum on average. In this case, adequate results are obtained in shorter time
spans (100 trials).

The second test case involves six decision variables. The number of trial
configurations used to establish a solution is relatively small with respect to the
configuration space. Because this test case models an open queuing system, the average
number of parts in the system depends on the configuration. As a result, most
neighboring responses differ by more than the error in their estim - ~s. Local Search with
one iteration obtains solutions 82% above the optimum. Simulated Annealing with 100
trials obtains solutions more than 100% above the optimum. Local Search with five
iterations obtains solutions 37% above the optimum on average. Simulated Annealing
tuned for 200 trials obtains solutions 17% above the optimum on average. The results
imply that Simulated Annealing does not compare favorably against Local Search in
shorter search times when the model involves many decision variables, but clearly
dominates with longer search times available.

The third test case involves the same six decision variables, but models the system as
a closed queuing network. There are always thirty parts in the system regardless of the

configuration used. As a result, the response difference between many neighboring
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configurations becomes so small that the error in their estimates is large in comparison.
This explains the unusual results obtained. Local Search obtains solutions 20% above the
optimum on average and the two best Simulated Annealing alternatives obtain between
12% and 16% above the optimum on average. The remaining five Simulated Annealing
alternatives obtain solutions 160% above the optimum on average in 100 trials (130% in
200 trials). The only difference between the two best alternatives and the five worst
alternatives is the method used to force convergence. All five of the worst alternatives use
a temperature function while both of the best alternatives use a coefficient function. The
coefficient functon accepts fewer challengers with response values close to the
incumbent's response. This implies that the poor alternatives are accepting too many
small increases in the response value. To confirm this pattern, two more alternatives are
tried that used coefficient functions. The results were similar. Therefore, Simulated
Annealing alternatives that use a coefficient function are less sensitive to errors in tuning.
The coefficient function appears to dominate the bias introduced by the temperature
function.

Simulated Annealing can be applied to a simulation model with good results. The
SLAM language can be used to implement the algorithm. The selection of an acceptance
function and the determination of an adequate search times remain problem dependent.

In general, an acceptance function with both a logarithmic temperature function and an

elliptic coefficient function appears to be a consistently good alternative.
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5.2 Recommendations

To date, there have been few articles written about the application of Simulated
Annealing to simulation models. Many of the results obtained from the application of
Simulated Annealing to deterministic functions may or may not be applicable. In the case
of the present study, many elements were fixed that might have been better implemented in
another way. One of these areas provides the subject matter for future research:

1. What are the affects of different permutation methods on solution quality?

Many of the questions raised in the conduct of this research might also generate
enough interest to merit further study:

2. How do different batching algorithms impact efficiency?

3. How does high estimate variance affect performance?

4. How does the number of trials needed to obtain good results increase as the
number of decision variables increase?

Another recommendation concerns the application of Simulated Annealing to
simulation models in an operational context. Imagine that an actual system performs
under a given set of constraints, but those constraints vary as machines break down or get
replaced. The optimal configuration of resources changes on a dynamic basis. Now
imagine that an operator has access to a simulation model conformant with the new
constraints and can use an optimization technique to find a good allocation of those
resources. What capabilities would the analyst want to have? These questions may have
the most significance:

5. Given a specified time constraint, which technique should be used?

6. Can the performance of Simulated Annealing be improved interactively, where
the analyst varies the temperature at will?

7. Can Simulated Annealing be made artificially intelligent?
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Most of all, it is hoped that the present research will help future researchers to find

good solutions to real problems.
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A.1 Scenario

The scenario definition links the pieces together by name. It lists the filename for
itself as SCE]1, the control statements as CONT, the network model as NET1, and each of
the user inserts. Filename extensions are omitted since they must conform to a the
standard convention. The scenario definition used in the Job-Shop problem follows the
same format.

Although the scenario definition does not specify the contents of each module, it
does require that each named module exist. The SLAM executive coordinates the
instructions within each module to maintain consistency. If a module is improperly named,
is inconsistent with syntax requirements, or exceeds the program's limitations, then the
executive will generate an error message. The scenario will not run correctly if the
modules fail to meet these guidelines.

The control statements are identical for all three simulation models. The statements
themselves specify initialization conditions for each simulation run as well as executive
constraints used throughout the program'’s execution. These control statements support
three main ideas:

1. To maintain program flow and syntax,

2. To transfer executive control to the user inserts, and
3. To achieve a common basis of comparison for each trial configuration.

The GEN statement constrains the program's execution to 100,000 simulation runs
and suppresses the generation of unneeded output reports. These constraints allow the
external subroutines to generate the required number of simulation runs and report the

results in a desired format without conflicting with the SLAM executive.
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The LIMITS statement identifies the number of files required to store entities (6),
the number of attributes needed to describe each entity (2), and the maximum number of
entities allowed within the model at any given time (500). An entity is any object which
can enter a model, can change the model, can be changed by the model, or can exit the
model (25:64). These settings minimize the memory requirements of each entity while
maximizing the capacity for entities within the model.

The STAT statement allocates a file for the collection of statistics based on
observations recorded in an external subroutine. This enaules the external subroutines to
do two things: 1) to collect the desired observations needed to estimate the response, and
2) to use the statistical tools embedded in SLAM,

The SEEDS statement causes the pseudo-random number streams to be reinitialized
for each simulation run. This reduces the variability between the incumbent and challenger
responses. As a result, each simulation run uses common random numbers. The
acceptance test can more accurately compare responses because each configuration faces
a common set of experimental conditions (25:745).

The ARRAY statements make memory available to all external subroutines and
ensure that memory does not get reinitialized between simulation runs. The external
subroutines use the memory space to record solutions and to maintain control parameters
needed by the algorithm.

The NETWORK, INITIALIZE, and FIN statements are required by the SLAM
executive to maintain program flow and syntax. The FIN statement terminates the list of
control statements. The INITIALIZE statement constrains each simulation run to
1,000,000; more time than is actually needed. This allows the user inserts to determine

the end of each run. The NETWOQORK statement transfers control to network model.
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The network model consists of four segments: the resource and gate definitions, the
control of traffic at light 1, the control of traffic at light 2, and the control of the cycle.
The resources, START1 and START2, model the time-lag between stopped cars. The
gates. LIGHT1 and LIGHT2, model the traffic lights.

The control of traffic models the arrival of cars with an exponential distribution.

The v ¢ of the exponential distribution implies that the arrival of cars is "memoryless”: the
arrival a car neither depends on the arrival of the previous car nor affects the arrival of the
next car (27:203). On average, though, the cars arrive nine seconds apart at light ! and
twelve seconds apart at  light 2.

Examine the arrival of cars at light 1. The traffic waits for resource START1 and
proceeds across the stretch of road when gate LIGHT1 is open (the light is green). If the
car was stopped, it takes two more seconds to get started and up to the light. If the car
was already moving, it proceeds directly across the stretch of road. Statistics are collected
for waiting time at LIGHT1 using a COLCT statement. Statistics are collected for the
overall waiting time using the EVENT statement which links to a user insert. The
observations collected using EVENT are used to calculate the response value. The
control of traffic at light 2 works in an identical manner.

The timing of the lights uses a single entity to cycle through each of the four stages.
At first both gates are closed (both lights are red). Next gate LIGHT]1 is opened (green)
for time XX(4) and then closed for 55 seconds. Finally gate LIGHT?2 is opened for XX(5)
seconds and the closed for 55 seconds. The cycle repeats until the simulation run ends.

An entity placed into the network by a user insert immediately terminates the run.
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A.1.1 Scenario Definition.

Scenario:
SCEl
Control:
CONT
Network:
NET1
Script:
Facility:
User Insert:
EVENT1
FIRST1
INTLC
NEXT1
OTPUT
oUuTl

PUT1

RAN

TEST1
TIME
Notes:
Data:
Curchange:
00000000
Definition:

A.1.2 Control Statements.

GEN,WARRENDER,TRAFFIC,7/20/93,1000,N,N0,Y/N,NO,N/1,72;
LIMITS, 4,3,550;

STAT, 3,WAIT TIME;

SEEDS, 9375295(1) /¥;

ARRAY (1,21);

ARRAY (2,21);

ARRAY (3,21) ;

NETWORK;

INITIALIZE,, 100000,Y;

FIN;
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A.1.3 Network Model.

RESOURCE/START1, 1/STARTZ2, 3;
GATES/LIGHT1,CLOSE, 2/LIGHTZ,CLOSE, 4;
; TRAFFIC FROM DIRECTION 1
CREATE,EXPON(9,1),,1;
AWAIT (1), START1;
AWAIT(2),LIGHT1;
COLCT (2), INT(1) ,WAIT TIME 1;
EVENT, 1,1;
ACT, 2, TNOW.GT .ATRIB(1) ;
ACT;
FREE, START1;
TERM;
; TRAFFIC FROM DIRECTION 2
CREATE, EXPON(12,1),,1;
AWAIT(3), STARTZ;
AWAIT(4),LIGHT2;
COLCT(3), INT (1) ,WAIT TIME 2;
EVENT,1,1;
ACT, 2, TNOW.GT.ATRIB(1) ;
ACT;
FREE, START2;
TERM;
; TRAFFIC LIGHTS
CREATE, ,,,1;
ACT, 55;
LOOP OPEN, LIGHT1;
ACT, XX (4):
CLOSE, LIGHT1;
ACT, 55;
OPEN, LIGHT2;
ACT, XX(5);
CLOSE, LIGHT2;
ACT, 55, ,LOOP;
ENTER, 1,1;
TERM, 1;
END;




A.1.4 User Inserts.
A.1.4.1 Subroutine INTLC.

$INCLUDE: 'PRCTL.FOR'

ChRARKAR KKK KKK AR KRR R AR AR KRR N A AR KN AR AR RN ANARR AR AR AR R AR Ak kX

C**  ANNEALING ROUTINE CONTROL * %
C**********************************************t*******
SUBROUTINE INTLC
SINCLUDE: 'PARAM.INC'
$INCLUDE: 'SCOM1.COM'
SELECT CASE (II)

C***********************************t******************

Cxx* NEIGHBORING SOLUTIONS **

C**********************************************t***t*t*

CASE (2, 12, 22, 32, 42, 52, 62, 72, 82, 92)

CALL NEXT
AR AR AR KRR R KA AR KRR AR AR AR R AR AR AR KRR KRR AR KRR R KRR R AR KRR Kk
Cxx* NEW INITIAL SOLUTIONS * %

C******************************************************

CASE (1, 11, 21, 31, 41, 51, 61, 71, 81, 91)
IT=1I1I +1

CALL FIRST
CrA AR AR AR AR R AR KA A AR AR R AR KRR A AR A A AR AR R AR A AR A ANRARA RN RN
Cxx LOCAL SEARCH INITIAL SOLUTION (N=100, M=25) **
CRARARAEARRARRAARA AR ARR AR AN ARRARKNRRRRRARRRARR AR R RKKR

CASE (0)

II = 2

CALL PUTARY( 3, , 25.0)

CALL PUTARY( 3, ' 0.0)

CALL PUTARY( 3, ’ 0.0)

CALL PUTARY( 3,
CALL PUTARY( 3,
CALL PUTARY( 3,
CALL FIRST

C******************************************************

C*GEOMETRIC TEMPERATURE INITIAL SOLUTION (N=100, M=25)*

c******************************************************

, 3853417.0)
, 5113297.0)
, 1522731.0)

OJdo0d W

CASE (10)

II = 12

CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, &5, 1.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)

CALL FIRST




CrRRA AR AR R AR AR AR AR AR KRR R AR AN RN R RAR AR R KRR RARRR AR A A AR kA kh

C** LINEAR TEMPERATURE INITIAL SOLUTION (N=100, M=25)*

CAARX AR A AR A AR R A AR AR AR AR AR A AR AT RARRARANANA AR RN AR AR KRR

CASE
11 =
CALL
CALL
CALL
CALL
CALL
CALL
CALL

(20)

22
PUTARY (
PUTARY (
PUTARY (
PUTARY (
PUTARY (
PUTARY (
FIRST

’
’
’
’
’

WWLWwwww

’

’
’
14
14
’

OO W

’

25.0)
0.0)
2.0)

3853417.0)
5113297.0)
1522731.0)

ChkAR A KA KRR R KKK RAKRAAKRKAANRRARKAKRKARA KRR KRR A A AR AR R AR AR AR AR AR

C**ADAPTIVE TEMPERATURE INITIAL SOLUTION (N=100, M=25)*

ChRRAARRAKRARRKR KRR AR AR AR AR AR RN ARA RN AR R AR A AR ARk kA Ak kA A%k

CASE
II =
CALL
CALL
CALL
CALL
CALL
CALL
CALL

(30)

32
PUTARY (
PUTARY (
PUTARY (
PUTARY (
PUTARY (
PUTARY (
FIRST

4
’
’
4
1

Wwwwww

4

’
’
14
’

14

WO b W

’

25.0)
0.0)
3.0)

3853417.0)
5113297.0)
1522731.0)

ChRRA A XA KR RAKR KA KRR KRR ARAR AR AN R AR AR AR KRR RARR AR A AR kR kR kkkkk

C**ELLIPTIC TEMPERATURE INITIAL SOLUTION (N=100, M=25)*

(b A2 2SR ERRRRRRR aR 2 i 2 2 2 s s s s L

CASE
II =
CALL
CALL
CALL
CALL
CALL
CALL
CALL

(40)

42
PUTARY (
PUTARY (
PUTARY (
PUTARY (
PUTARY (
PUTARY (
FIRST

- -

LI

WWwwwww
-

’

’
14

14
’

O~ H W
~

’

25.0)
0.0)
4.0)

3853417.0)
5113297.0)
1522731.0)

CRRAAA KRNI KA AR A AR AR AR AR AR AN AR R RRRARKRRARRRR AN AR AR KRR KA Kk koK

CLOGARITHMIC TEMPERATURE INITIAL SOLUTION (N=100, M=25)

ChA A AR KA KRR AR KRR KRR KRR AR AN KR AR R AR KRKRRRAARRRARR AN A A AR AR AR A AR Ak k&

CASE
II =
CALL
CALL
CALL
CALL
CALL
CALL
CALL

(50)

52
PUTARY (
PUTARY (
PUTARY (
PUTARY (
PUTARY (
PUTARY (
FIRST

’
14
’

’

WU W

’
’

25.0)
0.0)
5.0)

3853417.0)
5113297.0)
1522731.0)




CrRR A AR R AR R AR R R AR R R A AR AR R AR R KRR AR ARRRRAARRARRRARRR KRR A ARA AR

C** LINEAR COEFFICIENT INITIAL SOLUTION (N=100, M=25) *x*

ChRAAARAAXAARKRRAKRAR AR RN AR AR RA R AR AR ARR AR IR AR R R AR Ak k*

CASE (60)

II = 62

CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 6.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)

CALL FIRST

ChRAA AR KA KRR KRR AR AR KRR AR ARR KRR AR R AR AN RRARKR AR RRKR AR RARA A A A ARk

C**ELLIPTIC COEFFICIENT INITIAL SOLUTION (N=100, M=25)*

Chrh AR RAR KRR AR R AR A IR A R AR KA RAKRA R AR AR AN A AR AR AR A AR A ARA KKK

CASE (70)

II = 72

CALL PUTARY( 3, 3, 25.0)

CALL PUTARY( 3, 4, 0.0)

CALL PUTARY( 3, 5, 7.0)

CALL PUTARY( 3, 6, 3853417.0)

CALL PUTARY( 3, 7, 5113297.0)

CALL PUTARY( 3, 8, 1522731.0)

CALL FIRST
o T L e e T T T L SR L b
Cx* LOCAL SEARCH INITIAL SOLUTION (N=200, M=25) * %
CARA R KKK R AR R AR KRR KRR R KRR R R AR AR AR KRR KRR A KRR AR RR AR AR KK

CASE (80)

II = 82

CALL PUTARY( 3, 3, 25.0)

CALL PUTARY ( 4, 0.0)

CALL PUTARY ( 5, 8.0)

CALL PUTARY(
CALL PUTARY(
CALL PUTARY(
CALL FIRST
ot R 22 R R L R T T T e Ty

C*GEOMETRIC TEMPERATURE INITIAL SOLUTION (N=200, M=25)*

(i 22 SRS R R R R s s s R oo s 2 2 2 d 2 2 2]

6, 3853417.0)
7, 5113297.0)
» 8, 1522731.0)

- - W -

WWwwwww

CASE (90)

II = 92

CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 9.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)

CALL FIRST
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CRARRAARKR KRR AR I ARIN AR KA AR R AR AR AR AR A RN R AR RRRR AR AR R AR AR

C** LINEAR TEMPERATURE INITIAL SOLUTION (N=200, M=25)*
CrRAR A AR AR AR R AR R AR AR R R R AR R KRR AR R AR AR KRR R AR R AR KRR KA AR ARk

CASE
II =
CALL
CALL
CaLL
CALL
CALL
CALL
CALL

(100)
102
PUTARY (
PUTARY (
PUTARY (
PUTARY (
PUTARY (
PUTARY (
FIRST

- W N -

WWwwwww

4

25.0)

0.0)

102.0)
3853417.0)
5113297.0)
1522731.0)

ORI AR R AR AR AR R AR KRR KRR R R AR AR KR AR AR KRR RN AR R KA KRR AR ARRAR KKK
C**ADAPTIVE TEMPERATURE INITIAL SOLUTION (N=200, M=25)*

ChrkAAXAKRKAKRAKARKAAKRANRKRRAKRRAKRAKRAAKRKR R AR A AR A A AR AR A AX RN AN

CASE
II =
CALL
CALL
CALL
CALL
CALL
CALL
CALL

(110)
112
PUTARY (
PUTARY (
PUTARY (
PUTARY (
PUTARY (
PUTARY {(
FIRST

’

’
’
’
14

WWwWwwww

r

3,
4,
5,
6,
7,

25.0)

0.0)

11.0)
3853417.0)
$113297.0)
1522731.0)

CAXK AR R AR AR IR KA AR ARAR AR A RKR R RRRRA IR R AR R AR ARk hk Rk kkk

C**ELLIPTIC TEMPERATURE INITIAL SOLUTION (N=2Q0, M=25)*

ChkRA AR AR KRR AR R A AR AR AR AR AR A A RRARRARA ARk A R AN ARk dk

CASE
II =
CALL
CALL
CALL
CALL
CALL
CALL
CALL

(120)
122
PUTARY (
PUTARY (
PUTARY (
PUTARY (
PUTARY (
PUTARY (
FIRST

-

.- w W ow

WWwwwww

’

4
4
’
’
’

O bd W

’

25.0)

0.0)

12.0)
3853417.0)
5113297.0)
1522731.0)

CRARA R AR KRR A KRR AR R AR AR AR RN AR AR KRR A RKRKRRAKRARKRA AR ARk khkkkhkk*k

CLOGARITHMIC TEMPERATURE INITIAL SOLUTION (N=200, M=25)

ChhkhkA Ak AAAk AKX AAXARAA KA Ak Ak bk hkhkhkrkhhkkdkrhhkkhkkhkhkkk

CASE
II =
CALL
CALL
CALL
CALL
CALL
CALL
CALL

(130)
132
PUTARY (
PUTARY (
PUTARY (
PUTARY (
PUTARY (
PUTARY (
FIRST

- W o~

-

WWWwwww
-

14
’
’

14

oot bW

’
’

25.0)

0.0)

13.0)
3853417.0)
5113297.0)
1522731.0)

ChRARA AR AR R A AR KA AR A KRR AR KRR AR AR R AN AR RR A AR AR AR AR KA A AR kA




C********************************t****t**********t*****

C*x* LINEAR COEFFICIENT INITIAL SOLUTION (N=200, M=25)**

c******************************************************

CASE (140)

IT = 142

CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 14.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)

CALL FIRST

C******************************************************

C**ELLIPTIC COEFFICIENT INITIAL SOLUTION (N=200, M=25)*

C******************************************************

CASE (150)

II = 152

CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 4, 0.0)
CALL PUTARY ( 5, 15.0)

6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CRRRRRKRRAR KRR KR AR AR R KRR AR AR AR AR R AR AR R AR AR KRR AR AR KA R AR
END SELECT
WRITE(*,10) INT{(II/10+1.0), INT(GETARY(3,4)+1.0),
+ INT(GETARY (3, 2) + 1.0)
10 FORMAT(315)
RETURN
END

A.1.4.2 Subroutine FIRST.

CALL PUTARY(

-

WWwwwww
- -

$INCLUDE: 'PRCTL.FOR'
SUBROUTINE FIRST

$INCLUDE: 'PARAM. INC'

$INCLUDE: 'SCOM1.COM'
C*******t**********************************************
Cr* STARTING GREEN LIGHT TIMES, * &
Cx* XX(4) = LIGHT 1, XX(5) = LIGHT 2 * %
C**************************************************t*t*

CALL RAN(6,R1)

CALL RAN(6,R2)

XX(4) = 50.0 + REAL(INT(R1*40.0))

XX(5) = 40.0 + REAL(INT(R2*40.0))
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C*****************************************************t

Ckx INITIALIZE XX (1) = SAMPLES AND XX(2) = BATCHES**
LR R e T I T T L L
XX (1) = 0.0

XX(2) = 0.0

XX(3) = 0.0

C******************************************************

C** INITIALIZE INCUMBENT AND SOLUTION VALUES falkel

C******************************************************

CALL PUTARY( 1, 1, 99999.9)
CALL PUTARY( 1, 2, 0.0)
CALL PUTARY( 1, 3, 30.0)
CALL PUTARY( 2, 1, 99999.9)
CALL PUTARRY( 2, 2, 0.0)
CALL PUTARY( 2, 3, 30.0)

C***********************************t******************

C** INITIALIZE ARRAY(3,1) = TOTAL RUNS **
C** ARRAY(3,2) = CURRENT RUN * %
CRrAR AR AR R AR AR IR AR A AR AR AR KR KA R KRR RRRR AR R AR AR KRR AR R AR AR K

RT = 100.0 + 100.0 * INT(GETARY (3, 5)/8)

CALL PUTARY( 3, 1, RT)

CALL PUTARY( 3, 2, 0.0)

CALL PUTARY( 3, 9, 0.0)

CALL PUTARY( 3,10, 0.0)

CALL PUTARY( 3,11, 0.0)

CALL PUTARY( 3,12, 0.0)

CALL SETTIM( O, O, O, 0)
CAARRAXAARAARA R X AR ARNA RN R AR AR AARRA KR AR AR KRR RRRARRRARI K

RETURN

END

A.1.4.3 Subroutine NEXT.

SINCLUDE: 'PRCTL.FOR'

SUBROUTINE NEXT
$INCLUDE: 'PARAM. INC'
SINCLUDE: 'SCOM1.COM'
C****************************************************
C** INITIALIZE INCUMBENT SOLUTION *%
C** AND SELECT A GUIDED DIRECTION *%x
C****************************************************
XX (4) = GETARY(1,4)
XX (5) = GETARY(1,5)
R = GETARY(3,2) - GETARY(3,10) - GETARY(3,11)
I INT (MOD(R, 12.0))




SELECT CASE (I)
CASE ( 0)
XX(5) = XX(5) +
CASE ( 1)
XX(5) = XX(5) +
CASE ( 2)
XX (4) = XX(4) +
XX (5) = XX(5) +
CASE ( 3)
XX (4) = XX(4) + 1.
CASE ( 4)
XX (4) = XX(4) + 2.
CASE ( 5)
XX(4) = XX(4) + 1.
XX (5) = XX(5) - 1.
CASE ( 6)
XX(5) = XX(5) - 1.
CASE ( 7)
XX(5) = XX(3) -
CASE ( 8)
XX (4) = XX(4) -
XX (S) = XX(5) -
CASE ( 9)
XX (4) = XX(4) -
CASE (10)
XX (4) = XX(4) - 2.
CASE (11)
XX(4) = XX(4) -
XX (5) = XX(5) +
END SELECT
RETURN
END

T N

HE N

oo o o [oN ) o o [o N e o o [o ¥ e o o
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i

A.1.4.4 Subroutine RAN.

$INCLUDE: 'PRCTL.FOR'
SUBROUTINE RAN(IS,R)

SINCLUDE: 'PARAM. INC'

$INCLUDE: 'SCOM1.COM'
REAL Z, R, C, G

4.294967296E+9

GETARY (3, IS)

5%xZ + 99991

MOD (G, C)

z/C

CALL PUTARY (3, IS, 2)

RETURN

END

TNQONQO
LI I
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A.1.4.5 Subroutine EVENT.

$INCLUDE: 'PRCTL.FOR'
c
SUBROUTINE EVENT (I)
o
$INCLUDE: 'PARAM. INC'
$INCLUDE: 'SCOM1.COM'
C
DIMENSION A(10)
REAL BATCHES, PROBABILITY

ChRRARKAAARA AR A RAKRA KRR A KRR A AR AR AR AR A AR AR AR A A AR AR Ak kA Ak kx

C** COLLECT XX(1) SAMPLES AND TOTAL WAIT XX(2) * %
AR AR KRR KRR KRR R KRR KRR AR KRR AR A RR AR KRR R AR R RRRAR KRR A KRR R KA K
IF (TNOW.LT.500.0) RETURN
XX (1) = XX(1) + 1
XX (2) = XX(2) + TNOW - ATRIB(1)

CAA AR R AR KRR KA AR R AR R R R KRR R AR R ARARRARR AR KRR AR R A RRA KRR R Ak k

C*x* RECORD BATCH MEAN **
XA AR AR R AR R R R AR KRR AR KRR AR R AR AR R KRR RRR AR KRR AR KRR R AR R R KR AR AKX

IF (XX(1) .LT.50) RETURN

WAIT = XX(2)/50

XX (1) = 0.0

XX (2) = 0.0

CALL COLCT (WAIT,1)

BATCHES = CCNUM(1) ~ 10.0
XA AR Rk R R AR KRR AR R R AR R KRR KRR AR KRR AR AR AR KRR AR AR KRRk kK
C** STOP COLLECTING BATCHES WHEN CRITERIA MET: **x
C** LESS THAN 100% CHANCE OF ACCEPTANCE OR 30 BATCHES*
CAA A KRR AR KRR R AR AR AR AR KRR R AR AR R AR AR AR R KARARAR AR R RAK

IF (BATCHES.LT.0) RETURN

CALL TEST (PROBABILITY)

TERM = PROBABILITY* (1 - BATCHES/31.25)

IF (TERM.LE.0.20) THEN

CALL ENTER(1,Aa)
RETURN

END IF

RETURN

END

92




A.1.4.6 Subroutine TEST.

EINCLUDE:'PRCTL.FOR'

- SUBROUTINE TEST (PT)

gINCLUDE:'PARAM.INC'

$INCLUDE: 'SCOM1.COM’'

¢ REAL RT,RC,T,Yl,S1,N1,Y2,S2,N2,SP,DY,L,PT

ChkAhkRhkhkkRAkRARIAARARAAIA R AAhhk A Ah kAR AR kAR A kAR Ak Ak k%

C** DELTA FUNCTION *x
CrRRARRRARRRRRRKRRRKARRRAKR" AR RRRARKRARRARRR AR AR AR KR AR X
Yl = GETARY(1,1)
Y2 = CCAVG(1l)
DY = (¥2-Y1)

CRARKAAAXKARXRAAAKRKAAAKRKRRKR KRR AR KA KA A AR AR AR ARk kA kA kkkkok

C**  CALCULATE PT; THE PROBABILITY OF ACCEPTANCE *%
C*****************************t**********************
IF (DY.LT.0.0) THEN
PT = 1.0
RETURN
END IF
IT = INT(GETARY (3, 5))

ChRrA AR AR R AR KRR R KR AN KRR AR A RR KRR KRR R A RARN AR AR A AR AR AR kAR Kk

C*xx* ACCEPTANCE FUNCTION * %
AR AR R R AR AR AR R R AR R AR AR A AR R AR AR KRR AR AR RRKRR AR KRR KRR R AR
SELECT CASE (IT)
CASE (0, 8)
PT = 0.0
RETURN
ORI AR AR AR AR AR R KRS YRR AR AR R R AR R KRR AR AR KR AR KRR AR AR IR AR KRR K
CASE (1)
RC = GETARY (3, 2)
T = 1.60*0.95**(INT(RC/10.0)-1.0)
PT = EXP (-DY/T)
RETURN
CASE (9)
RC = GETARY (3, 2)
T = 2.08*0.95**(INT(RC/10.0)-1.0)
PT = EXP (-DY/T)
RETURN
CASE (2, 10)
RT = GETARY (3, 1)
RC = GETARY (3, 2)
T =2.67 * (RT - RC) / RT
PT = EXP (~DY/T)
RETURN
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CASE (3, 11)
RT = GETARY (3, 1)
RC = GETARY (3, 2)
S1 = GETARY(1,2) + 0.0001
N1 = GETARY (1, 3)
S2 = CCSTD(1l) + 0.0001
N2 = CCNUM(1)
SP = SQRT(((N1-1) *S1**2+ (N2-1)*S2**2) / (N1+4N2-2))
T = 0.22 * SP * (RT - RC) / RT
PT = EXP (-DY/T)
RETURN

CASE (4, 12)

RT = GETARY (3, 1)

RC = GETARY (3, 2)

T = 1.54 * SQRT(1 - (RC/RT)**2)

PT = EXP (-DY/T)
RETURN

C****************************************************

CASE (5)

RT = GETARY (3, 1)

RC = GETARY (3, 2)

T = 5.24/LOG(RC + 1.0)

PT = EXP (-DY/T)

RETURN
CASE (6)
RT = GETARY (3, 1)
RC = GETARY (3, 2)
T = 6.84/LOG(RC + 1.0)
L = (RT - RC)/RT
PT = L*EXP (-DY/T)
RETURN
CASE (7)
RT = GETARY (3, 1)
RC = GETARY (3, 2)
T = 5.52/LOG(RC + 1.0)
L = SQRT(1 ~ RC**2/RT**2)
PT = L*EXP (-DY/T)
RETURN
CASE (13)
RT = GETARY (3, 1)
RC = GETARY (3, 2)
T = 6.15/LOG(RC + 1.0)
PT = EXP(-DY/T)
RETURN
CASE (14)
RT = GETARY (3, 1)
RC = GETARY (3, 2)
T = 8.04/LOG(RC + 1.0)
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L = (RT - RC)/RT
PT = L*EXP (~DY/T)
RETURN
CASE (15)
RT = GETARY (3, 1)
RC = GETARY (3, 2)
T = 6.48/LOG(RC + 1.0)
L = SQRT(1 - RC**2/RT**2)
PT = L*EXP (-DY/T)
RETURN
CRARRARRRR AR AR AR KRR R KR RN KRRR AR RRRR R AR AR AR RR RN R AR AR R KK
END SELECT
END

A.1.4.7 Subroutine OTPUT.

SINCLUDE: 'PRCTL.FOR'

SUBROUTINE OTPUT
S$INCLUDE: 'PARAM. INC'
$INCLUDE: 'SCOM1.COM'

REAL YC, YI, YB, RT, RC, PT, PC, SC, ST
C*****************************************************
Cxx* INCREMENT THE NUMBER OF RUNS **
C**  RETRIEVE YC AND YI SOLUTIONS * %
C*****************************************************

RT = GETARY (3, 1)

RC = GETARY (3, 2)

CALL TEST (PT)

RC = RC + 1.0

CALL PUTARY (3, 2, RC)

CALL RAN (8, PC)

YC = CCAVG(1)

YI = GETARY (1, 1)
YB = GETARY (2, 1)
A0 = GETARY (3, 9)
Al = GETARY (3, 10)
A2 = GETARY (3, 11)
A3 = GETARY (3, 12)

CHrRARRAAAKKKRKRKR KRR ARRARR KA ARk AR RA A A AR Ak kkhhkhkhhkkkhkhhkk

Cx* YC IS LESS THAN PREVIOUS YB SOLUTICN * %
C*****************************************************

IF (YC.LT.YB) THEN

A0 = A0 + 1.0

Al = Al + 1.0

CALL PUTARY (3, 9, A0)

CALL PUTARY (3, 10, Al)

CALL PUT(1)

CALL PUT(2)
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GOTO 100

END IF
AR AR AR RN AR R KRR AN RN R AR R R AR KRR AR ARARRANR A AR AR ARk ko
C** YC IS LESS THAN YI SOLUTION **

c*******************i*********t******t******t***t**t*t

IF (PT.EQ.1) THEN
A0 = A0 + 1.0
A2 = A2 + 1.0
CALL PUTARY (3, 9, A0)
CALL PUTARY (3, 11, A2)
CALL PUT(1)
GOTO 100
END IF
ORI KRR KRR AR R AR R R AR R AR AR AR AR R AR R AR AR AR AR AR R AR AR KRR AR AR KK
C**DETERMINE ACCEPTANCE OF A MOVE AWAY FROM OPTIMUM **
C**COMPARE THE PC AGAINST PT OF ACCEPTANCE *
i R T S R e L
IF (PC.LT.PT) THEN
A0 = A0 + 1.0
A3 = A3 + 1.0
CALL PUTARY (3, 9, A0)
CALL PUTARY (3, 12, A3)
CALL PUT(1)
END IF
AR AR KRR R AR KRR KRR AR KRR R AR AR KA AR AR AR A AR R AR AR AR R AR AR R

C** ANNEALING COMPLETE, START FROM NEW SOLUTION * %
CRRAA KRR AR KRR R RRRR AR KRR AR KRR R AR KRR AR R R R AR R RRRA AR AR ARk
100 IF (RC.LT.RT) RETURN

II = IT - 1

ST = GETARY (3, 3)

SC = GETARY (3, 4) + 1.0

CALL PUTARY (3, 4, SC)

CALL OUT
AR AR AR KRR AR AR KRR AR AR R AR R AR KRR AR R RRRR AR KRR KRR AR KRR R RAR
Cx* TEST COMPLETE, START NEW TEST * %

CrEAXAAAAARXKXAXAARRARRR AKX R ARKRARAA KK ARRRAKRA R A KRR AR AR AR AKX

IF (SC.LT.ST) RETURN
II = ITI + 9

ChARXAAAAARKAKAKRAKARKRRAAAR A KR A RAKAKAA R KA AR AR A A AR A AR AR A AR A

Cxx* PROBLEM COMPLETE *x
CRA A AR AR AR KRR KRR AR R KA R AR KRR AR R KRR AR KRR R AR R AR R KRR AR KRR AR
IF (II.LT.160) RETURN
WRITE(*,*) 'TYPE ENTER TO CONTINUE'
READ (*,*)
STOP
END




A.1.4.8 Subroutine PUT.

$INCLUDE: 'PRCTIL. UR"
SUBROUT Thi PUT(I1)

SINCLUDE: 'FAxAM. INC'

$INCLUDE: 'SCOM1 .COM'
CALL PUTARY(I1l, 1, CCAVG(l))
CALL PUTARY(I1, 2, CCSTD(1l))
CALL PUTARY(I1l, 3, CCNUM(1l))
CALL PUTARY (I1, 4, XX(4))
CALL PUTARY(I1, 5, XX (5))
RETURN
END

A.1.4.9 Subroutine OUT.

S$INCLUDE: 'PRCTL.FOR'
SUBROUTINE OUT
SINCLUDE: 'PARAM. INC'
SINCLUDE: 'SCOM1.COM'
C****'k************t***********************t**t******tt
CALL TIME (RTIME)
IT = INT(RTIME)
IA = INT(II/10) + 1
IS = INT(GETARY (3, 4))
IR = INT(GETARY (3, 2))
IMO = INT(GETARY (3, 9))
IM1 = INT(GETARY(3,10))
IM2 = INT(GETARY(3,11))
IM3 = INT(GETARY(3,12))
OPEN (UNIT=8, ACCESS='APPEND',FILE="'VAL1.DOC"')
OPEN (UNIT=9, ACCESS="'APPEND',FILE='SOL1.DAT')
OPEN (UNIT=10, ACCESS='APPEND',FILE ='REC1.DOC"')
WRITE (8, 10) Ia, ',' , 1s, ', ,
+ INT(GETARY(1,4)) , ',' , INT(GETARY(1,5))
10 FORMAT (I5, Al, I5, Al, IS5, Al, IS5, Al)
WRITE(9, 20) 1A, ',' , IS, ',*' , IT , *,',
+IR""IIM0I'I'IIM1I'I'IIMZI'I'I
+ IM3 , ',' , GETARY(2,1) , ',' , GETARY(2,2) , ','
20 FORMAT (I5, Al, I5, Al, I5, Al,
+ I5, Al, IS5, A1, 15, Al, 1%, Al,
+ 15, aAl, F8.2, Al, F8.2, Al)
WRITE(10, *) IA, IS
WRITE (10, *) GETARY (3, 6)
WRITE (10, *) GETARY (3, 7)
WRITE (10, *) GETARY (3, 8)
CLOSE (UNIT = 8, STATUS = 'KEEP')
CLOSE (UNIT = 9, STATUS = 'KEEP')
CLOSE (UNIT =10, STATUS = 'KEEP')
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RETURN
END

A.1.4.10 Subroutine TIME.

ChRARARKRRARARKKRARAAARKRAAAKRKAARRKAARRAR AR R R A ARk kkk

C** RETURNS SYSTEM TIME IN SECONDS **

CHRAKAAKRAARAARAAKRA KA AR R ARRAKRRRRRARR R AR AR AR AR AN AR %

SUBROUTINE TIME (RTIME)
C
REAL RTIME
CALL GETTIM(IHR, IMIN, ISEC, I100TH)
RTIME = 3600*REAL (IHR)+60*REAL (IMIN)+REAL (ISEC) +
+ REAL (I100TH) /100.0
RETURN
END

A.2 Optimal Solution.

The following two pages contain the response map generated by completely
enumerating the configurations and finding their responses. The responses were obtained
for each configuration by taking the mean of 100 batch means. Each batch contained 50
samples. The global optimum was found by scanning the response map and taking the
minimum value. Several global optima were found, as shown in bold font. The minimum

value was found to be 76 seconds.
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A.3 Data.
A.3.1 Alternatives Compared.

Geometric Temperature Solution Quali